LADDER + BASIC

Editor
Simulator
Web-Server

Internet
TRILOGI

Verson 5.2

Tﬁ@% Programmer’s

Triangle Research Reference

International, Inc.

Copyright Notice

TRILOGI Version 5.x are trademarks and copyrights ©2001-
2003 of TRIANGLE RESEARCH INTERNATIONAL, Inc. ("TRi").

All rights reserved. No parts of this manual may be
reproduced, transmitted, transcribed, stored in retrieval
system, or ftfranslated into any human or computer
language, in any form or by any means, without the
express written permission of TRIANGLE RESEARCH
INTERNATIONAL PTE LTD, SINGAPORE. Please refer all
inquiries to info@tri- plc.com

* MSDOS and Windows 25/98, NT, 2000 and XP are a trademarks
of Microsoft.
MODBUS is a trademark of Groupe Schneider.
All ofther trademarks lbelongs to their respective owners.

Disclaimer

TRI makes no representations or warranties with respect 1o
the contents hereof. In addition, information contained
herein are subject to change without nofice. Every
precaution has been taken in the preparation of this
manual. Nevertheless, TRi assumes no responsibilities for
errors or omissions or any consequential damages
resulting from the use of the information contained in this
publication.

Table of Contents

Chapter 1 - Internet TRILOGI 5.x Installation Guide

l. Introduction to the TRILOGI Program
Il. Installing TRILOGI 5.x on Windows 98, Me, NT, 2000 or XP

Chapter 2 — Introduction to Internet TRILOGI
Client/Server Architecture

Chapter 3 — Using The TLServer — Web Server for TRILOGI

. Overview

Il. Serial Port Setup

. Configure Users

IV. Setup Emails

V. Files and Email Services

Chapter 4 — Running The Internet TRILOGI Client

l. Running The Internet TRILOGI Application
II. Running TRILOGI Applet Using Web Browser

Chapter 5 — Ladder Logic Programming Tutorial

l. Your Assignment: Creating Your First Ladder Logic Program
Il. Testing Your Ladder Logic Program Using The Simulator
lll. Transferring Your First Ladder Program To The PLC

Chapter 6 — TRILOGI Ladder Logic Editor Reference

l. The Browse Mode
Il. The Circuit-Editing Mode

Chapter 7 - TRILOGI Main Menu Reference

l File Menu

. Edit Menu

lll. Controller Menu
V. Simulate Menu
V. Circuit Menu

VI. Help Menu

Chapter 8 - Ladder Logic Language Reference

l. Ladder Logic Fundamentals: Contacts, Coils, Timers
and Counters
Il. Special Bits

JR (|
JR (|

2-1

3-1
3-3
3-7

3-12

7-1
7-4
7-7
7-10
7-12
7-13

lll. Special Functions
IV. Using TRILOGI Sequencers

Chapter 9 - Introduction to TBASIC Custom Functions

l. Overview

Il. Custom Function Editor

I, Custom Function Execution

IV. Simulation & Examination of TBASIC Variables
V. On-Line Monitoring of TBASIC Variables

VI. Error Handling

Chapter 10 - TBASIC Statements, Functions, Operators
And Variables

[, What are TBASIC Statement and Functions?

Il. TBASIC Integer Constants, Variables & Operators
lll. String Variables and Constants

IV. Special Variables — EMINT, EMLINT & EMEVENT

Chapter 11 - TBASIC Keyword Reference

ABS(x)

ADC(n)

ASC(x)

CALL n

CHRS(n)

CLRBIT v,n

CLRIO, SETIO, TOGGLEIO, TESTIO
CRC16

DELAY

10. FOR ... NEXT

11. GetCtrSV (n); GetTimerSV (n)
12. GETHIGH16(v)

13. GOTO @n

14. HEXS(n), HEXS(n,d)

15. HEXVAL(x$)

16. HSCDEF ch, fn_num, value
17. HSCOFF ch

18. HSTIMER n (High Speed Timers)
19. IF..THEN..ELSE..ENDIF

20. INCOMM(ch)

21. INPUTS(n)

22. INTRDEF ch, fn_num, edge

23. INTROFF ch

24. LEN(x$)

VPN O~ -~

9-1
9-1
9-2
9-5
9-8
9-9

10-1
10-2
10-7
10-8

11-1
11-1
11-1
11-1
11-2
11-2
11-2
11-3
11-3
11-4
11-4
11-5
11-5
11-5
11-6
11-6
11-7
11-7
11-7
11-8
11-9
11-9
11-9
11-9

25.
26.
27.
28.
29.
30.
31.
32,
33.
34,
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45,
46.
47.
48.
49,
50.
o1,
52.
53.
o4,
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.

695.
66.
67.
68.
69.
70.

LET

LOAD EEP(addr)
LOAD_EEPS$(addr)

LSHIFT i,n

MIDS (x$,n,m)

NETCMD(ch, x8)

OUTCOMM n,x

PAUSE

PIDcompute(ch,E)

PIDdef ch, Imt, P,1,D

PMON ch; PMOFF ch

PRINT #n x$; y,; z
PULSEFREQUENCY(ch); PULSEPERIOD(ch); PULSEWIDTH(ch)
READMODBUS (ch, DevicelD, address)
READMB2 ch, ID, addr, var, count
REFRESH

REM (or ")

RESET

RETURN

RSHIFT 7,n

SAVE_EEP data, addr

SAVE EEPS data, addr
SETBAUD ch, baud no

SETBIT v,n

SetCtrSV n, value; SetlimerSV n, value
SETDAC n,x

SETHIGH16 v, data

SETIO labelname

SETLCD n,offset,x$

SETLED n,m, value
SETPASSWORD string
SETPROTOCOL ch, mode
SETPWM n,x,y

SETSYSTEM n, data

STATUS (n)

STEPCOUNT(ch)
STEPCOUNTABS(ch)
STEPHOME ch

STEPMOVE ch, count, r
STEPMOVEABS ch, position, r
STEPSTOP ch

STEPSPEED ch, pps, acc
STRS(n); STRS(n, d)
STRCMP(48,BS)
STRLWRS(4$)

STRUPRS(4$)

11-9

11-10
11-10
11-11
11-11
11-11
11-12
11-12
11-13
11-14
11-15
11-15
11-16
11-16
11-17
11-18
11-18
11-18
11-18
11-19
11-19
11-20
11-21
11-21
11-22
11-22
11-22
11-23
11-23
11-23
11-24
11-25
11-26
11-26
11-27
11-27
11-28
11-28
11-28
11-29
11-30
11-30
11-31
11-31
11-31
11-32

/1.
72.
73.
74.
75.
76.
77.

TESTBIT (v,n)

TESTIO (labelname)

TOGGLEIO labelname

VAL(x$)

WHILE ... ENDWHILE

WRITEMODBUS ch, DevicelD, address, data
WRITEMB2 ch, ID, addr, var, count

Appendix 1 - Application Notes & Programming Examples

Important Notes to Programmers of TRILOGI Version 5.x
TRILOGI Sample programs

1. Display Alphanumeric Messages on built-in LCD Display
2. Setting Timer/Counter Set Values (S.V.) Using LCD Display
3. Using a Potentiometer As An Analog Timer

4. Motion Control of Stepper Motor

5. Activate Events at Scheduled Date and Time

6. HVAC (Heating, Ventilation and Air-Conditioning) Control
7. Closed-Loop PID Control of Heating Process

Appendix 2 - PLC & PC Hardware Setup and Configuration

PLC to PC Connection
Networking Issues

Appendix 3 - PLC-to-Modem Communication Setup

1.
2,
3.

Modem Connection
Communication Speed
Software and Programming

11-32
11-32
11-32
11-32
11-33
11-33
11-34

Al-1
Al-3

Al-4
Al-5
Al-6
Al-8
Al-9
Al1-10
Al-T1

A3-1
A3-2
A3-3

Chapter 1. Internet TRILOGI 5.x Installation Guide

Introduction to the TRILOGI Program

TRILOGI is a tfrademark name used by Triangle Research International to
describe its family of Ladder or Ladder+BASIC program editor, simulator
and up-loader software.,

The original TRILOGI program was written to run under the Microsoft MS-DOS
operating system and today is still available for programming TRi's range of
PLCs such as the E10, the H-series and M-series PLCs. In fact, we have
included all the DOS version of TRILOGI software in the root directory of your
CD-ROM free-of-charge within the zip file "DOS TRILOGI V4.1 3.zip"

The newer Intermnet TRILOGI 5.x client/server suite is written to run under alll
currently available 32-bit Microsoft Windows operating systems as Windows
@8, Me, NT, 2000 and XP. Due to the fact that Internet TRILOGI is written in
100% pure Java, we could someday port the software suite to other O/S
platforms such as Apple OSX or Linux. However, at the moment only the
following PC Windows O/S have been tested: Windows 98, ME, NT, 2000
and XP. The “SetupTlL5.exe” file can only run under the PC based Windows
O/S.

. Installing TRiLOGI 5.x on Windows 98, Me, NT, 2000 or XP

1. In the root directory on the Internet TRILOGI 5.x CD-ROM, you should find
a folder "x86-Windows” which is where all the setup files for PCs running
MS Windows are located.

2. You should install Java Run Time Environment (JRE) Version 1.3.1 on your
PC BEFORE installing the TRILOGI Client/Server bundle. First, double-click
on the file "j2re1_3 T1-win.exe" to install Java. Please follow all instructions
provided by the Install Shield program and install it in the given default
path: "C:\Program Files\JavaSoft\JRE\1.3.1".

3. After you have installed JRE 1.3.1, double-click on the "SetupTL5.exe" to
install Internet TRILOGI.

4. Al TRILOGI Version 5.x files will be installed in the following default
directory: "C:\TRILOGNTLS". You normally would not need to go directly to
this directory to run TRILOGI. This is because during installation of TRILOGI,
a program Group folder "Internet TRILOGI 5.x" will be created to in the

1-1

Start Menu to provide short cuts to the TLServer program, the TRILOGI

application and the TL50Applet starter, as illustrated in the following
picture.

(53 Adobe Acrabat 4.0 r
(53 CorelDR&W 3
E

Internet TRILOG! 5.1

Internet E xplorer

Internet TRILOG! Helps
LozalHost Applet. hitm
bicrosoft Access Tlzerver [with Jawva Conzole]
TLServer Wersion 2.0
TRILOGI 5.1 Application

Uninztall Internet TRILOG] 5.1

ticrozoft Excel
bicrozaft Outlook,

GHEgEE B ®

ticrozaft FowerPaoint
bicrozaft WwWiard

myzingtel dialer

e EE [K LB

Mational Instruments Lookout 4.5

Note: A short cut for TLServer is also created on the “Quick Launch”
toollbar on some Windows platform that supports it.

TLServer shotcut

iﬂﬁtalt”] Gl _: %5 ¥

1-2

Chapter 2: Introduction to Internet TRiLOGI
Client/Server Architecture

1. Internet TRILOGI is a Client / Server application suite. The entire program
is broken into two parts: the Server and the Client.

2. Server: In order to run the complete TRILOGI program, including access
to the PLC, you must start the TLServer first. TLServer behaves like a typical
web server and it is capable of serving HTML web pages as well as Java
Applet to an Internet Browser such as the Microsoft Internet Explorer or
Netscape Navigator. TLServer connects to the PLCs via the PC's serial
communication port and it is the one responsible for conveying
communication messages between the Internet TRILOGI client and the
M-series PLCs. (Note: TLServer is not included with Education version of
TRILOGI since there is no real PLC involved.)

3. Client: The TRILOGI program is the one which you use to create your
ladder logic + TBASIC program and is called the "Client" program. (If you
are programming the PLC offline then you only need to run the client
program without the TLServer.) The beauty of the client/server
configuration is that it does not matter whether the server and client are
located at the same computer or at 20,000 miles apart and they work
exactly the same way. The client and the server can communicate via
any form of network connection, including the Intemet. This makes it
possible for the user to program the PLCs either locally or remotely via
the Internet or even wirelessly via mobile Internet.

Another important advantage of client/server architecture is that multiple
clients may access the same server simultaneously. Hence you can run
multiple copies of the TRILOGI clients at different places around the
world simultaneously for troubleshooting a single PLC. You can also run
the TRILOGI client AND the “TRi-ExcelLink” clients simultaneously!

4, TRILOGI client software is available in two forms:

i. As a Local Java Application - The TRILOGI program (as well as the
JVM, see below) must be locally installed in the PC that it runs on.

i. As a Java Applet - The client computer only needs to use a Java-
enabled Web browser such as the Internet Explorer 5+ or Netscape
Navigator 4.5+ to invoke the TRILOGI applet. There is no need to
install the TRILOGI software in the local computer.

2-1

TRILOGI Application vs Applet: Which is Better?

Pros

Cons

Starts up immediately.

Can read/write TRILOGI files
to local hard disk or to
TLServer.

Can access any TLServer on
the network.

Require local installation of
TRILOGI software at every
client computer.

Require installation of JVM
at every client computer.

Need to specify the proxy

Application '

pPp Prograrn behavior server P k;thcljrzss c;lleorly”ﬁ
predictable since the copy running enina @ irewatl.
of JVMis local. Printing Service is not
Printing is supported via Java available fo the applet.
2 function calls to the JVM.
No need to install any Can only read/write TRILOGI
software or JVM at the client files to the TLServer but not
computer. to the local hard disk.
Possible to control your PLC Can only access the
via any “Cyber Café”. TLServer from which it was
Maintenance and Upgrading loaged.
of software is simple since May take a few minutes to

Applet only one copy of the load itself the first time.

TL50Applet.jar file needs to
e changed.

Centralized storage of
program files only at the
server. This is good for
providing PLC program
fraining.

(Thereafter the browser
should cache it for rapid
start up.)

Program behavior may vary
for different make or
different versions of the
bbrowser.

We shall describe how to run the TRILOGI Application and Applet software

in Chapter 4.

2-2

Chapter 3: Using The TL Server —Web Server for TRILOGI

. Overview

To Start TLServer, either click on its lcon on the Windows “Quick Launch bar”
(shown below) or click on the “Start” butfon and select “Infernet TRILOGI 5.X",
then select “TLServer Version 2.x" and a TLServer panel will appear. You can
minimize TLServer but it should be actively running in order to service
network request from TRILOGI via the Internet or local area network.

TLServer shotcut

s | 1 @ -.._ 9
B3 TLServer - PLC We -|O| x]| TLServer acfs as a gateway to connect the
Intarnet TRILOGI Server M-series PLC to the corporate LAN or the
Intfernet so that they can be controlled and
IP address= 192.168.1.101:3080 programmed by a TRILOGI client from
Serial Port Setup anywhere in the world.
Configure Users When a client program such as TRILOGI

wants to read from or write to a PLC, it send

a command to the TLServer using the TCP/IP

Copyright () Triangle Research Intl, Ine | OrOtOCOIl fransported via the Infranet, the
SRl Interet or a local host connection.

Help I Version 2.0

Setup Emails

The TLServer, upon receiving the command, will carry out the actual reading
or writing to the PLC via the PC's RS232 or RS485 port. The data received from
the PLC is then relayed back to the client program via TCP/IP protocol.
TLServeris also a Web Server which serves up web pages that contain the
TRILOGI Java Applet to enable you to use any Java-enabled Web browser to
access the PLC without the need to install a local copy of the TRILOGI
application software

Note: Starting from Version 2.0, TLServer also provides "File and Email Services" to
the PLCs. That means that a PLC can send a command to the TLServer 1o open a
fle and save its data into the PC's hard disk. It can also command the TLServer to
send out the data as an email to anybody in the world. File and Email Services are
described in Section V in this chapter.

The new Email Service works differently from the original email function provided in
TLServer 1.0 in that TLServer does not poll the PLC; instead it is the PLC that initiates an
email request asynchronously. This makes it possible for a PLC to dial-in via a modem
fo request the TLServer to help it send out an email without demanding a constant
connection the TLServer. However, the original email function is still supported in

3-1

Version 2.0 because that has the advantage of being able to service email requests
for multiple PLCs linked via the RS485 network.

When TLServer is first started, it will query the operating systems for the IP
addresses of the computer that it runs on. (It may take a while if the O/S is slow
fo retun the IP address). It will then display the obtained IP addresses
(maximum of two) on the TLServer front panel so that the user can quickly
determine the IP addresses that they can use to access the PLC. The following
are some possible IP address scenarios:

If the computer is not linked to any network or the Internet and does not have
any network adapter installed, then only the localhost P address
("127. 0. 0. 1: 9080" where 9080 is the port number) will be displayed.

Note: regardless of whether your PC is networked or not, the local host IP
address: 127. 0. 0. 1: 9080 is always available to the client program running
on the same PC where the TLServer is running, even though it may not be
displayed on the TLServer's front panel. (TRILOGI and TRi-Excellink are all known
as "client" programs). So whether your PC is networked or not, you can sfill use
TLServer and TRILOGI on a localhost connection. In that case the TRILOGI and
TLServer work together on the same PC just like a normal Window based
programming software. We recommend using the localhost IP address:
127.0. 0. 1: 9080 if you are running both the client and the server on the
same PC. If the computer has an 'always on' direct connection to the Internet
directly then the IP address will be your Internet IP address.

If the computer is networked to the corporate Infranet, or you have connected
this computer to a router to share internet connection with a few other
computers, then the IP address shown is an infernal IP address, also known as
the "Intranet" IP address. The intranet IP address is assigned by either the
System Administrator or by the router (known as DHCP server). You can access
this computer from other computers in the same LAN, but the intranet [P
address is not accessible from outside of the LAN.

To access the TLServer from outside of the LAN, You will need to configure your
router's intermal settings to define the PC that runs the TLServer as a "Virtual
Server'. You can then access the TLServer using the router's public IP address
and the routers does the job of translating the public IP address to the intranet
IP address and route the messages to/from the PC that has been defined as
the virtual server. This process is known as Network Address Translation (NAT).

If you connect a computer in a LAN to the Interet via a dial up connection,
you will see two IP addresses: one is the Intfranet address and another is the
Internet IP address. The Intranet address is only accessible from within the
Infranet. The Intemet IP address will be what you need to use if you are
accessing TLServer from the Internet. See the PLC Setup & Configuration
section of the installation guide for more detailed explanation of Intranet
Installation and problem with Firewalls.

3-2

Notes to Dial-Up Users: If you are testing the Internet capability of TLServer using
dial-up connection, you must connect to the Internet first before starting
TLServer so that TLServer can report the correct Internet IP address to you. You
will not see the local host IP address (127.0.0.1), only the Internet IP address will
e shown.

The moment TLServer is running, it is ready to accept connection from the
TRILOGI client. You can also configure TLServer's communication port sefting,
add/remove users from the system and set up TLServer to query the PLC for
outgoing email requests and process them accordingly. The following sections
explain the function of each button. (Remember, you can also call up their
context-sensitive help by pressing <F1> key after pressing the relevant button
on the TLServer front panel.)

Il. Serial Port Setup Serial Port Setup

1. Setting Up and Test Serial Communication

E%%Serial Communication Setup & Test

N [=IF
Fort Mame: |r_:ow|1 vIEIaud Rate |384EIEI "I

Data Bits: IB vI Stop Bits: |1 'I
Parity: |N|:|ne vI Tirne Qut ims) |500

Dpen Bart | Close F'nrtl Cohhest

Hamg Lp | shecial |

[Modern [AutoAnewer. Fhone be. |

Command String: (Press =Enter= to Send)

Response Strings & Modem Messages Clear I
COM1 opened at 22400bps. -]

(FPlease close port hefore changing any parameters)

i i

ChangePLCID | {Cioes Fi-Help |

This dialog box allows you to configure the serial port of the host computer
to match the setting on the PLC for proper communication. Most of the
items here are self-explanatory. If you have more than one PLC connected
to the host computer via RS485, all the PLCs must have the same serial port

setftings as the TLServer. The omenPort| btton allows you fo fest whether the
communication port is available to TLServer., You can also click the

M button to temporarily relinquish the port to other applications

3-3

(such as TRILOGI Version 3 or 4). Note that you will need to close an opened
port before you can change its parameter.

The *Command String” text entry field allows you to test communication with
the PLC using its native or MODBUS ASCII protocols. If you enter a string here
and press <Enter>, the ASCII string will be sent to the PLC connected to the
serial port and the response string will be displayed in the boffom text box. If
the serial port is not yet opened this command will automatically open it.
Note that only multi-point host link commands are accepted here. The
only point-to-point command acceptable here is the "l R*" command
which queries the ID address of the PLC.

If you have only one PLC connected to your TLServer computer, then you
can fest the communication now using the following command string:

Command String : | R*
Response String @ 1 RO1*

The response string tells you that the ID address of this single PLC is 01. You
can then try other host link commands using this ID address. (e.g.
@01RIO000* to query the states of inputs #1 10 #8)

If you have more than one PLC connected you should not use the "IR*"
since all connected PLCs will try to respond simultaneously, thus resulting in
a garbage return string. To change the ID of a PLC, e.g., from 01 to 05, you
can send the command string "@0T1IW0500*" to the PLC. In TLServer 2.0

and above there is also @ _CanEEPLOID | o won 1ot does this for you
automatically. You can click on the "Detect ID" bufton to check the current
ID and then the "Change ID" button to write the new ID to the PLC.

. Changing Communication Settings

Most likely you may want to leave the comm port seftings at their default
values: 38,400 bps, 8 data bits, 1 stop bit, no parity. Some reasons for
changing the comm port settings may be due to the need to change the
PLC's serial port to lower values (e.g. for communication via radio using
9600 bps). Changes to the comm settings are saved to the TLServer
configuration file: "TLserver1.cfg" when you quit TLServer.

One other scenario is when you need to power cycle an M-series PLC with
DIPswitch #4 turned ON (to halt the CPU in order to disable any execution
by the "1st.Scan" pulse). Since the PLC's serial port is set to 2600 bps when
power ON with DIP Switch #4 setf, you will need to change the baud
rate temporarily in order to communicate with the PLC (e.g. to blank out a
program that causes frouble).

3-4

However, do remember to change the baud rate setting back to
38400bps after you have reset the PLC with the DIP switch OFF, otherwise
you may have problems communicating with the PLC later on since
changes to comm seffings are automatically saved.

3. Modem Support

a) Dial Modem: TLServer 2.0 incorporates support for dialing a modem
connected to the PC's COM port. This is useful if the PLC has to be located
at a remote location yet still has access 1o the public telephone line or to a
cellular phone. You can then connect the PLC to a standard analog
modem such as the US Robotic 33.6Kbps or Hayes Acura smart modem.
The TLServer can then dial the phone number of the remote modem and
make a connection. Once a connection is established, the remote PLC is
immediately accessible 1o client applications such as Internet TRILOGI or
TRi-Excellink, etc over the Internet, Infranet or localhost as if it were
connected to the TLServer via the serial port directly.

Notes:

Due 1o the time delay for modulation/demodulation process as well as
fransmission delay, two-way communications via modem tends o be
noticeably slower than connection made by direct cable connection. This
is quite normal and does not indicate a problem with the communication
setup.

The PC's modem must be able to emulate the COM port of the PC in
order for the TLServer modem function to work. Some of the newer
computers employ "win modem" or "soft modem" which may only work
with Windows' dial-up networking. These kinds of modems are implemented
in software and they do not necessarily emulate a standard PC COM port
properly. They also demand quite a bit of CPU horsepower to process the
communication. Therefore these types of modem may not work too well
with the TLServer. If your built-in soft modem does not work properly with
TLServer, you should get an external modem. These are quite inexpensive
nowadays and they will work much better with the TLServer modem support
function.

To setup TLServer to dial a modem, first close the active COM port by
clicking on the "Close Port" button. Select the COM port where the modem
is connected (you can find out the which COM the modem is connected
to by checking the "Control Panel -> Modems -> Properties"), then click to
select the "Modem" checklbox. You will then be able to enter a
telephone number to dial. The 3 buttons: "Connect', "Hang Up" and
'Special' become enabled when you select the "Modem" mode. Note
that the "Baud Rate" field now becomes the "DTE speed" which specify the
line rate between the PC and the modem (this has nothing to do with the

3-5

actual baud rate between the modems which will be automatically
negotiated based on the quality of connection). Normally you should
leave the DITE speed set to the highest value (115200) unless your modem
manufacturer specifies otherwise. The PLC can be operating at a different
baud rate from the PC to modem-line-rate because of the
modulation/demodulation action of the modem.

Important: The PLC-to-mmodem connection must be properly prepared
before you can use TLServer to connect to the PLC's modem. Please refer
to Appendix 3 to read more details about the PLC-to-Modem
Communication Setup.

Once you have entered a proper phone number, click on the "Connect"
button to start dialing the modem (make sure that the "Aufo Answer" check
box is not checked). If the remote modem is busy or does not answer the
call you will see the corresponding error messages in the response box.
Click on the "Hang Up" buftfon anytime to abort the dialing operation.

If you click on the "Special' button a special dialog box will appear as
follow:

I3 Special Setup x|/ - You can change the DIE speed by
selecting a new value from the choice
CTESkeed menu.

hloderm Init String

[aT&KD . You can specify a special AT command
|

_ to be sent fo the modem during modem
Sl initialization. Normally you can leave this
| field to its default value which is AT&KO.

You can also specify a special "Call-in Password" which is only used if the
TLServer puts itself in auto-answer mode (see description later). Any
incoming connection made by a remote modem must give the correct
password upon connection; otherwise the connection will be immediately
dropped. The Call-in password feature is disabled if the corresponding
textbox is empty.

b) Auto Answer: If you select the "Auto Answer" checklbox and click on the
"Connect" button, the TLServer will setup the modem to automatically
answer the incoming call on the first ring. There are many uses of this
capability:

Any number of PLCs in the field can periodically dial in to a single TLServer
and write or append the values of their internal variables to data files on

3-6

the PC's hard disk using the PLC File Service commands. This is extremely
useful for deploying the M-series PLC for data-acquisition purposes. You
can format the data using CSV format so that the file can be readily
imported into an MS Excel or Lotus 123 spreadsheet.

The remote PLC can dial in and ask TLServer to send out its data to any
email address immediately.

The remote PLC can dial in and synchronize its real time clock with the
TLServer,

The TLServer can play the role of an ISP where the PLC can dial in and
e accessible to the Internet.

Some ". PC&" sample programs that enable a PLC to dial in to the TLServer
and request for file or email services are provided in the following folder:

"C:\TRiLOGI\TL5\usr\samples\FileService_Modem"

To prevent unauthorized access by any incoming call, you can specify a
"Call-in Password" string as described above. If the "Call-in Password"
confains any text other than an empty string, then the incoming caller,
upon connection, must immediately send a CR-terminated string that
matches the "Call-In Password" string in order to maintain the connection.
If the password is incorrect the TLServer will disconnect the remote modem
to prevent unauthorized access. If the call-in password is validated the
TLServer will acknowledge it by sending a CR-terminated string "<OK>" to
the remote PLC via the modem. It is the duty of the incoming caller to
check the acknowledgement string to ensure that the TLServer does not
drop the connection.

Configure Users Configure Users

By definition, only the "Administrator’ is [Eli v i X|
authorized to add/delete users and '
change password. Hence when you
click on the “Configure Users” button, Password: |
you are assumed to be the

Administrator and is asked to enter the

Administrator's password o gain entry. Cancel I
By default, no password has been

sername IAdministratnr

defined for the Administrator, so you
should just press <Enter> key to gain
entry the first fime.

Once you get through the Administrator Login screen, a dialog box will
popup, which allows you to add new users who are allowed access 1o the

3-7

TLServer and the PLCs. You can also change the password, userame or
the access level of an existing user or delete an existing user. A new user
defined here will be given his/her own exclusive subdirectory to store ladder
programs. For PCs, this directory is located at:

"C\TRiLOGI\TL5\usr\<username>""

where <user nane> is the same as the Username defined here.

"Select Username" - Double-clicking on [EEOTIESTEE x|
an existihg username opens up the

. Server Fort
username/ password dialog. You can now u i

add password to the Administrator if you SelectUsername
wish to prevent unauthorized access to the Mmiﬂliﬁtfatﬂr

. samples
predefined usernames and passwords. A Rt

There is also a pre-defined user named
“samples” with no password where many
samples TRILOGI files are stored.

If you select a username and then press
the key, you can delete the user
provided its directory is empty. (You can
use Window Explorer or TRILOGI Application Close
to delete the contents of the user's directory
first before deleting him/her from TLServer).

"- Add New User -" Clicking on this field allows you to add new users to
the system. You can add as many users as you like subject to memory
and hard disk limit.

Server Port: If you click the check box to the left of the "Server Port"
label, you can change the default "port" that the TLServer listens on.
When the client accesses the TLServer. Whatever you define here must
e matched by the same port number

E.Q. if the port number = 8000, then localhost access must be:
http://127.0.0.1:8000/

However, if the port number is defined as 80 (default port for HTTP
server), then you can access the server using just the IP address without
the port number: http://127.0.0.1/

What Port Number Should TLServer Use?

In most cases you can simply use the predefined port number “2080".
However, you may like fo read the explanatfion box below regarding
definition of a "Port". You can see that the default port for most public web-

3-8

servers is port 80. You can define TLServer to listen at port 80 as well; in that
case there is N0 need to specify the port number in the URL. However, there
are reasons why you may or may not want to do that. It depends on
whether you are installing TLServer on a corporate intranet or on the public
Internet and whether the client (TRILOGI) is to access TLServer within the
intranet environment or from the public Internet. Please read Appendix 2:
"PLC & PC Hardware Setup and Configuration” for an explanation of how to
use the port number properly.

Ports, or addresses within a computer, are used to enable
communication between programs. Port addresses are 16-bit
addresses that are usually associated with a particular application
protocol. An application server, such as a Web server or an FIP
server, listens on a particular port for service requests, performs
whatever service is requested of it, and returns information to the
port used by the application program requesting the service.

Popular Internet application protocols are associated with well-
known ports. The server programs that implement these protocols
listen on these ports for service requests. The well-known ports for
some common Internet application protocols are shown below:

Port | Protocol

|

| 21 | File fransfer protocol
| 23 | Telnet protocol
|
|

25 | Simple mail fransfer protocol

80 | Hypertext fransfer protocol

IV. Setup Emails Setup Emails

This TLServer Email capability is first implemented in TLServer 1.0 and is
carried forward to Version 2.0 and above. This method depends on the
TLServer 1o periodically scan each configured PLC for the state of their
email request flags and hence require that the TLServer be constantly
connected to the PLC(s) via the serial port. (Another email support function
available only to TLServer version 2.0 and above is described in the next
section: “File and Email Services')

A PLC program raises an email request flag by setting the variable
emEVENT [1] to a non-negative value (see explanation on "Writing TRILOGI
Programs that Can Send Emails" in the later part of this section) whenever it
needs to send an email. The TLServer, upon sensing that an email request

3-9

flag has been raised, will extract the sender, recipient and message strings
from the PLC's internal variables and send them out using the pre-defined
SMTP outgoing mail server.

A single TLServer can service the email requests for one or more (Mmax. =
256) PLCs connected to it via RS232 or RS485. To setup the server to
handle email requests, click on the "Setup Emails" button on the TLServer to
open the following dialog box:

SMTP Mail Server: This will be the same
Outgoing Mail Server that you use in

your email program such as the |&fgieyBtilerin -[0O] x|
Eudora or Outlook Express. If in doulbt, SMTP Mail Server
ask your ISP or System Adminstrator for ; Eheck

help. This server must be setup properly
before the TLServer can send any

email. If your SMIP server requires 31” i :i
authentication via POP3 you will have 3% [o .
fo use your email program to check 04 0
your email once prior to using it to gg g
send emails. 07 0
PLC ID# column: For you to select PLCs 33 g
with ID from OO-FF (256 in total) to set e
the email service period. i 10 Comm Errorl]
ao 0
Check Every (seconds) - this allows you OE 0
to define how offen the TLServer should ?E 3 -

check the PLC (the email service
period) for the state of the outgoing
email request flag.

Simply click on field next to the PLC ID# of interest 10 open up a text entry
field (as shown in the figure for ID=02). Enter a non-zero value (in seconds)
to define its email-servicing period.

Note: Both SMTP Server and email service period definitions will be saved 1o
the hard disk when you exit TLServer program. They will be reloaded when
you start TLServer again. This email service period does not determine how
often the PLC will send email, since email will only be sent when the email
request flag is set even if you had set a very short email service period. It
only affects how quickly the email will be sent whenever a PLC raises its
email flag. You should set a short service period (say every 10 seconds) for
urgent email (such as alarm condition). For non-urgent email such as
hourly or daily production report you can set a much longer servicing
period to reduce the communication loads on the PLCs.

3-10

Inactive PLC
TLServer aftempts to communicate with every PLC that has a non-zero
email service period. However, if the PLC is inactive (e.g. It has not been
turned ON or has been disconnected from the server) the communication
will fail. Since communication failure takes considerable amount of CPU
waiting time and could affect the normal communication with other
active PLCs, inactive PLCs are internally marked by the TLServer (shown as
iRl message in the email setup dialog) and will not be checked
according to their defined service period 1o avoid repeated
communication failure. However, TLServer will re-scan these inactive PLCs
every two minutes to check whether they have come on-line. If an
inactive PLC is found to respond to command it will be unmarked and put
back in service for its email request.

You can also manually force the re-scanning of all PLCs by clicking on the
Check

button once. Then scroll to the PLC of interest to check if there is a
Sululii message. Check the PLC communication port wiring if there
iS an error.

Writing TRILOGI Programs that Can Send Emails

In order to send an email, the TRILOGI program needs to use the string
variables AS, BS, C$ to store the headers and DS to Z$ to store the
messages. (Not all strings need fo be used; unused strings are still
available for normal program use) The special variable emEVENT[1] is used
as an email request flag which should be initialized to -1 when the
program is not requesting email service. When the TRILOGI program wants
to send an email, it first stores the sender, recipient and subject into the
following variables:

AS Sender email address - which can be used to
identify the source of the email.

BS Recipient email address - this one must be
accurate

C$ Subject of the message.

DS First line of Message

ES Second line of email message

Z$ The 23rd line of the email message
-1 = NOT sending any email.

emEVENT[1] | O to 23 = number of lines in the email message

body which are contained in DS to ZS.

3-11

The maximum numiber of lines in your email is limited by the number of
string variables D$ to Z$ (23 in total) available in the M-series PLC.

For example, if the PLC needs 1o send email 1o trilogi@yahoo.com with @
1-line greeting, then the program needs to activate a custom function
that contains the following statements:

A$ = ""Demol@PLC" " sender

B$ ="trilogi@yahoo.com" " recipient
C$ = "This i1s an email demonstration"

" subject

D$ = "The time is"
+STR$(TIME[L])+":"+STR$(TIME[2]) +
. How are you doing?" " Message body
emEVENT[1] = 1

You must also setup the email service period (say every 10 second) in the
"Setup Emails" screen for this PLC. When the TLServer scans the PLC and
found that its emEVENT[1] is set to 1, it will extract the headers and
message body from the PLC's sting variables. Only A$ to DS will be
extracted in this example since the message contains one line of body
text only, as indicated in emEVENT[1]).

TLServer will then contact the SMIP server to send out the email. In
addition, after processing the email request, the TLServer will set the
emEVENT[1] variable to a value of "-1" (no email). Hence there is N0 need
for the TRILOGI program to worry about clearing the email request flag
after the email has been sent. In addition, this provides a way for the PLC
program to know whether the TLServer is functioning properly and whether
the email request has already been processed. However, do take
note that even if the emEVENT[1] has been reset it does not guarantee that
the email has been correctly dispatched to the recipient. Success of
emailing is subject to the proper configuration of the TLServer, the network
quality and availability of the SMTP server at the moment when TLServer
fries to send out the email. For urgent situations you may consider sending
out multiple emails periodically until the user has aftended to the
machine.

. Files and Email Services

Starting from version 2.0, the TLServer provides a numiber of “File and Email
Services” to the PLCs via the serial comm port. Basically a PLC can send
service requests to the TLServer using "tags" (which are ASCIlI characters
enclosed between the '<' and '>' characters) and the TLServer will perform

3-12

the service requests upon receiving valid commands. All data between
the <command [parameter]> tfag and the </> tag will be freated as
data for the requested service.

Since the PLC is the one that initiates the service request, it does not need
to be linked to the TLServer all the time unless it needs to request a service
from the TLServer. This makes it possible for a remote PLC to connect to the
TLServer, via the telephone line and modem to perform the required file or
email services, then disconnects itself from the TLServer so that other PLCs
can take turns to connect to the TLServer 1o request for services.

Note: All the files created or used in the write/append/read actions are
located in the directory: <ftrilogi base directory> /FileService. (Hence the
default path is C:\TRILOGI\TL5\FileService). You may also
read/write files that are located inthe sub-directory below the
"..../FileService" directory provided that the sub-directory already exists.

The currently supported files and emails services are described below:

1. Write data E.g. To save data of DM[1] to DM[10] to a file name

to file. "testWrite.txt", execute the following statement from a custom

function:

Format:
PRINT #1 "<WRITE testWrite.txt>" ' Write data request

<WRITE FORI=1TO 10

[flename]> PRINT #1 DM[];" " REM delimited by space characters.

data data NEXT

dafa... PRINT #1 'send a CR character.

data PRINT #1 "</>" ' End of Sernvice request

</> The TLServer will close the file after it receives the end-of-

sewice tag "</>" from the PLC and it will in turn send a
"<OK>" string to the PLC to acknowledge that the WRITE
request has been completed successfully. It is up to your PLC
program to check for the "<OK>" tag to determine if it the
service it requested have been completed successfully.

2. Append E.g. To append the time of an event to a file name
data to file "testAppend.ixt’, execute the following statements in @
custom function when the event take place:

Format:
<APPEND PRINT #1 "<APPEND testAppend.ixt>" ' Append data request
[flename]> PRINT #1 "Event Time = ";TIME[1];":"; TIME[2];":"; TIME[3]

data data PRINT #1 "A="A

data... PRINT #1 "</>" 'End of Service request

data....</> - If the file does not exist a new file will be created.

3-13

Otherwise, the PLC's real time clock data in the format
"nh:mm:ss" and the value of A will be appended at the
end of the file "testAppend.ixt" every time the above
statements are executed.

The TLServer will close the file after it receives the end-of-
serwice tag "</>" from the PLC and it will in fumn send a
"<OK>" tag to the PLC to acknowledge that the APPEND
request has been successfully completed. It is up to your
PLC program to check for the "<OK>" tag to determine if
it the serice it requested have been completed
successfully.

3. Email data
to recipient

Format:

<EMAIL [emaill
address]>

Sender: [sender
email]

Subject:
[subject text]
data data
data...

data

</>

E.g. To send datfa to an email address:
whoever@yahoo.com with the subject "PLC Email Test",
execute the following statements:

PRINT #1 "<EMAIL whoever@yahoo.com>""'change it to
your own emaiil.

PRINT #1 "Sender: friuser@hotmail.com" ' it can be anything.
PRINT #1 "Subject: PLC Email Test"

PRINT #1 "Hello, this email is sent by your friendly TRILOGI
PLC"

PRINT #1 "Don't worry, everyting is working out great today!"
PRINT #1 </>

Note:

"Sender:" field should be in email format such as
XXx@yyy.zzz, but it does not need be a vald email
address.

"Subject:” field is optional and may be omitted totally

The TLServer will first save all the data it received into a
temporary file named "Email.ixt" in the default directory.
After the TLServer receives the end-of-service tag "</>"
from the PLC and it will then send out the email to the
recipient email address. This email service will make use
of the SMTP server defined in the "Setup Emails" portion of
the TLServer configuration, so make sure that you have
defined a correct SMIP server before testing the email
service function.

When the email has been successfully sent via the SMITP
server, the TLServer will send an "<OK>" tag fo the PLC to
acknowledge that the EMAIL request has been successfully
completed. It is up to your PLC program to check for the
"<OK>" tag to determine if it the service it requested has
bbeen processed.

3-14

This service allows the PLC to request the TLServer 1o open a

4. Read Data text file and upload its content to the PLC. This may be
from File. useful for loading some previously saved parameters,
Format: Upon receiving this command and if the specified
[flename] is successfully opened, the TLServer will begin
<READ sending all the ASCII characters contained in the text file to
[flename]> the PLC. Note that line breaks in a text file are sent o the
</> PLC as CR character only and not as a CR+LF pair. As
such, your PLC program can easily use the INPUTS(1)
command to read in all the CR-terminated text string one
string af a fime and then interpret or convert the data as
necessary. After sending out the last byte in the data file to
the PLC, the TLServer wil send a CR-terminated
acknowledgement string "<OK>" to the PLC to signal that
the READ command has bbeen properly completed.
This service allows the PLC to get the Real Time Clock data
5. Read Real of the TLServer (i.e. the PC in which the TLServer runs on).
Tim Clock The type of data is indicated in the Date[n] and Time[n]
From parameter which correspond to the DATE[n] and TIME[N]
TLServer system variables in TBASIC:
Format: i.e. Date[1] = year; Date[2]=month; Date[3]=day;
<READ RTC[]> Date[4]=DayofWeek;
</>
<READ Time[1]=hour; Time[2]=minute; Time[3]=second.
Date[n]>
</> For full synchronization, use the <READ RTCI[]> tag which

wheren =1,2,3
or 4,

<READ
Time[m]>
</>

where
m=1,2,3.

retuns the values of the Date[1], Date[2], Date[3], Date[4],
Time[1], Time[2], Time[3] in 7 CR-terminated ASCII strings.

Upon receiving this command the TLServer will immediately
send the relevant clock/calendar data as CR-terminated
ASCII string(s) to the PLC. Your PLC program can easily use
the INPUT$(1) command to read in the data and convert
them info infegers using the VAL command. Note that
unlike the "READ file" service, the TLServer does not send
'<OK>" string after performing the "READ RTC" service.

3-15

Chapter 4: Running Thelnternet TRiLOGI Client

Running The Internet TRILOGI Application

Basically there are 3 methods in which you can start the TRILOGI
application, as follow:

1) If the Internet TRILOGI and JRE have been properly installed on your PC,

2)

3)

you can just double-click on the short-cut "TRILOGI 5.1 Application" in the
"Start Menu" to start the TRILOGI application.

(53 Adobe Acrabat 4.0 r
(53 CorelDR&W 3 g
]

B Internet TRILOGI 5.1
E Intermet E xplarer
@% bicrosoft Access Tlzerver [with Jawva Conzole]

&)
&)
o
A% Micosaft Eucel 3 TLServer Version 2.0
=
i

Internet TRILOG! Helps
LozalHost Applet. hitm

‘_El bdicrozaft Outlook TRILOGI 5.1 Application

@ ticrozaft FowerPaoint Uninztall Internet TRILOG] 5.1
Microzoft \wiord i
@f myzingtel dialer

g " Mational Instruments Lookout 4.5

=
!
W

You can also open My Computer and open the folder: C:\TRILOGITLS),
then double click on the file "TL51.jar" to start TRILOGI application. If JRE
has been properly installed the TL50.jar file will be recognized by
Windows to represent executable Java program and it will run
immediately. (Note: In the same folder you will also find the file
"TLServer20.jar" which is the actual jar file for TLServer).

The third alternative is to run the program from DOS command line: First,
run the MS-DOS prompt and then navigate to the directory
"CATRILOGNILS". At the directory, enter the following command line:

C:\TRiLOGI\TL5> java -jar TL50.jar

This procedure is actually encapsulated by the '"TL5.BAT" batch file
located at the ""C:\TRiLOGI\TL5"" folder that you can double-click from
the same folder to execute. This method of starting TRILOGI application
has an advantage in that it opens the Java Console window, which can
e useful because system errors and exceptions are normally reported
via the Java Console. This can give a clue to reason of failure. (You can
also start TLServer by running the "tlserver.bat" file.)

4-1

HELZPIII

When running TRILOGI, you can get on-line help any time by pressing
the <F1>. A Help window will open to show you the typical key/mouse
actions. You can also click on the <More Help> button to get context-
sensitive help loaded into your web-browser. It is assumed that you
have Internet Explorer installed in the following directory:

C:\Program Files\Internet Explorer\IEXPLORE.EXE

However, If your PC does not come with this browser installed, then
TRILOGI Application will report problem opening the web-browser. If
that is the case you'll need to use the "Notepad' program to manually
edit the "confi g. t |1 5" file in the ""C:\TRiLOGI\TL5\"" directory. Modify
the first line:

Browser Path=C:/Program Files/Internet Explorer/I1EXPLORE.EXE

to match the correct browser path info. This problem does not occur 1o
the applet since the TLS0Applet automatically uses the same browser
in whom it was loaded to open the help files, hence the applet does
not need to know the browser path.

[I. Running TRILOGI Applet Using Web Browser

1) Before you could run the TRILOGI Applet in a web browser, make sure
that the TLServer is already running.

2) Next, start up your Internet Browser. It should e either an Internet Explorer
version 5.0 or later, or Netscape Navigator/Communicator Version 4.5 or
later. Earlier versions of browser have some bugs in their JVM
implementation and hence may not work well with TRILOGI.

3) Next, check the TLServer front panel for its IP Address. If you are running
TLServer on a PC without network connection it will prolbbably show: IP
Address = 127.0.0.1:9080. If you have an Internet connection before
you start up TLServer, then you will see the Intermet IP address of your PC.
If your PC has both a local area network connection as well as a direct
Internet connection, you will see two IP addresses being reported.
(Although localhost address 127.0.0.1 may not be reported but it is
always there as long as both the Client and the Server reside in the
same computer. Always use the localhost IP address 127.0.0.1 if
both the Client and the TLServer are running on the same computer.)

4-2

4) Now, simply key in the IP Address, including the port number in your
browser's "Address" (for IES) or "URL" (for Netscape) text entry area. For
localhost connection, enter:

http://127.0.0.1: 9080

J File Edit “iew Favortes Tool: Help |ﬁ
J&-2 - QB & @65 7| Google-] >
| ddress [€] bitp:/127.0.0.1:3080 Mai ~| @Go
st
Internet TRILOGI Version 5.0
Copyright (c) 2001 Triangle Research International, Ine
T T = o i e

5) The browser will now issue a HTIP request to the TLServer. Since no
flename has been specified, the default file in the web-server root
directory 'i ndex. ht ml " is loaded. This HTML file is written in Javascript to
provide some other options. To start the TRILOGI as an applet, select the
appropriate option and the TL60Applet.jar file will be loaded from the
TLServer into your browser for execution.

Note: The TLServers root directory is not the same as the PC's root
directory. In TLServer, the root directory is actually at
"C:\TRiLOGI\TL5\public\". This is the directory where the
i ndex. ht i and TL50Appl et. jar file are stored and these
fles are served to the web browser when you enter the
TLServer's IP Address as mentioned above. Visitors have no
access to the PC's file directory above the server's root directory
so the content of your other PC files will not be at risk of being
exposed 1o visitors 1o TLServer.

Disabling TRILOGI Applet

If you want to prevent visitors to TLServer from loading TRILOGI
Applet at all, just remove the "TLApplet.jar' file from the directory:
"C:\TRiLOGI\TL5\public\". In that case you can only access
the PLC using the TL5 application program.

4-3

Chapter 5: Ladder Logic Programming Tutorial

l. Your Assignment: Creating Your First Ladder Logic Program

In this tuforial, we would like to create a simple program as shown below:

EgﬁTHiLI]EI Yersion 5.0 - CATRILOGIATLSAusrAsamplezi\Demo PCh
File Edit Controller Simulate Circuit Help
cirouit#1 [[A Ao O O ol [[r B
start Stop RUM =
L | = Ly {RL)
RUM Cruration
o | S—)
RUM Step hanual Saqi
e Avseq)
Cle0.5s hdanual
I | i
11 Al
Seql outl
| | {OUT)
outd
L ouT)
Seql2 out2
1] {OUT)
out?
L ouT)
Seql3 outd
| | {OUT)
outf
L ouUT)
Seql:d outd
1] {OUT)
outh
L ouT)
ol | Ay

Simply follow the steps below to create your first ladder logic circuit.
1. Open pull-down "File" menu and select "New",

2. You should now be in the "Browse" mode of the logic editor. The vertical
line on the left end of the screen is the "power" line. The cursor is at the
position where you can key in your very first ladder logic.

3.

10.

Before we commence the circuit creation, let us define the I/Os 1o be used
for this program. The following 1/Os are required:

[=31/0 Labels

Igpu’rs Start, Stop, Manual, Step 4[mnputs -| >
utputs : Outl, Out2,.... Out8 SR

Relays : Run start -

Timers . Duration Stop :I

Sequencer : Seql

Open up the /O label editing Window by pressing
<F2>. (Although you can also click on "Edit" menu
and select the item "/O Table" to achieve the same,
we strongly recommend learmning the hot key F2 as it is
often much more convenient to use).

Scroll to the "Inputs" window by using the left/right
cursor keys or by clicking on the red color left/right
arrow buttons or simply select it from the choice box
between the left/right arrow buttons.

i

= LVm]] RS | Myt Ay | Y N e]

hd

Move the deep blue color highlight bar to Input #1 posifion by clicking on
it. Click again to open up a text field for entering the name for Input
#1.Enter the name "Start" for Input #1. Press <Enter> key to accept the
name. The text field will be closed and the name "Start" is now assigned
to Input #1. If you made a mistake, simply press the "spacebar" or click on
the input location again to edit it.

Press <Enter> key again and the highlight bar will be moved to Input #2.

Without using the mouse button, simply start typing the name "Stop" at
Input #2. The text field will be automatically opened up at Input #2 for
entry. Press <Enter> after typing in the name for "Stop" input.

Complete entry of the other two input label names "Manual' and "Step" as
above. Note that if you enter more than 10 characters in the text field, only
the first 10 characters are accepted. Also, white spaces between names
are not acceptable and will be automatically converted to the underscore
character (' '). e.g. If you enter the name: "M series PLC" for an 1/O, it will
be accepted as "M_series P".

After entering label names for Inputs #1 to #4, move to the "Output" table
by pressing the right cursor key or by clicking on the right arrow button.
Enter all the output and relay label names in their respective I/O tables. We
will discuss the "Timer" table in the next step.

5-2

11.

12.

13.

14.

Important Notes

a) You can shift the Items in the 1/O table up or down or insert a
new label between two adjacent, pre-defined labels. Simply
press the <Ins> key or Right-Click the mouse button to pop
up the "Shift I/O" menu that allows you to shift the selected
I/O. However, please note that if you shift the I/O down, the
last entry in the I/O table (e.g. Input #256) will be lost.

p) TRILOGI Version 5 allows /O label names of up to 10
characters. However, if you wish to keep compatibility with
DOS TRILOGI Version 4.x you should use no more than 8
characters to define the I/O names.

Timer table has an extra column "Set Value" [E51/0 Labels
located to the right of the "Lalbel Name" E Timers ,|E
column. | # | Lavel Wame |sec value|

Imration Il ooo ﬂ

After you have entered the label name
"Duration" for Timer #1, a text entry box is
opened up at the "Set Value" location of Timer
#1 for you to enter the SV for the timer. SV
range is between 0 and 9999. Enter the value
1000 at this location.

el L L L L L L L) oyl [y 1Y L
=1 || | ol raf O

hd

For a normal timer with 0.1s time base, the value 1000 represents 100.0
seconds, which means that the "Duration" timer will time-out after 100.0
seconds. If the timer had been configured as "High Speed Timer” using
the TBASIC "HSTimer" commmand, then the time-lbase would become 0.01s,
meaning the value 1000 represents only 10.00 seconds.

We are now left to define the sequencer, "Seql". The sequencer is an
extremely useful device for implementing sequencing logic found in
many automated equipment. TRILOGI supports 8 sequencers of 32 steps
each. Each sequencer requires a "Step counter' to keep track of the
current step sequence.

The first 8 counters in the counter table also double as the step counters
for the 8 sequencers. These sequencers must be named "Seql" to "Seq8"
if they are to be used, i.e. Counter #1 to be named as "Seql", Counter
#2 as "Seq?", etc. However, any counter not used as sequencer may

5-3

15.

16.

17.

18.

assume any other name (up to a maximum of 10 characters) if they are
used as ordinary counters.

If you are af the "Timers" table, pressing the right cursor key again will bring
up the "Counters" table. Enter the name: "Seql1" at the label column for
Counter #1. Press <Enter> and the text entry field will be opened at the
"Set Value" column. For now, let's enter a preset value of "4" for "Seq1".

We have now completed defining the 1/Os, timers and counters. Press the
<ESC> key to close the counter or other tables. Note that not all labels
need to be defined before programming. You may create the label
names any timer during circuit creation by pressing hotkeys <F2>.

We are ready to create Circuit #1 as shown below:

start Stop RLH
i ——F L)

RUN Cruration

=N S—)]

With the circuit pointer (red color friangle) at Circuit #1, press the
<Spacebar> to enter the "Ladder Edit" mode. You can also enter the
circuit edit mode by double clicking atf Circuit #1.

E%%THiLI]EI Version 5.0 - Untitled_pch
File Edit Controller Simolate Circuit Help
Circuit#1 [[Ha H g —C 37] = yo] —Frig] HFnlg| Z5p] »
|
1| | AL

Once you enter the "Ladder Edit" mode, a row of ladder icons appear
along the top of the main TRILOGI window just below the pull down
menu. The following is a description of each item. A yellow color
highlight lbar, which you can move to select an element in the ladder
circuit, will appear.

5-4

<1> - Left click to insert a normally-open series contact.

sl <2> - Right click to insert a normally-closed series contact.
<3> - Left click to insert a N.O. parallel contact to highlighted
element
<4> - Right click to insert a N.C. parallel contact to highlighted
element
<b5> - Left click to insert a N.O. parallel contact to enclose one
or more elements.
]

<6> - Right click to insert a N.C. parallel contact to enclose one
or more elements.

<7> - Insert a normal coil which may bbe an output, relay, timer
or counter.

<8> - Insert a parallel output coil (not an entire branch) to the
current coil.

<9> - Insert a special function coil which includes execution of
CusFn

<0> - Insert a parallel special function coil to the current caill.

</> - Invert the element from N.O. to N.C. or from N.C. to N.O.

Click to move the highlight bar to the right (same effect as
pressing the right arrow key). This can be used to move cursor to
a junction that cannoft be selected by mouse click.

JIER T

=8 Double-click to delete a highlighted element.

19. Now insert the first element by left clicking on the icon. The icon will
change fo a bright yellow color o show you the element type that you are
creating. At the same time, an I/O table should appear on the screen with
a light beige-color background instead of the normal light blue
background. The /O table now acts like a pop-up Mmenu for you to pick
any of the pre-defined label names for this contact.

20. The contents in the table are not normally meant to be edited at this

moment. Scroll to the "Input" table and click on the lalbbel name "Start" and
a normally open contact will be created at Circuit #1.

5-5

EgﬁTHiLI]EI Yersion 5.0 - [CATRILOGIAT L5AusrizamplesiDemo.PCS] - [Source: Local Dizk] =] 3

File Edit Controller Simulate Circuit Help

Circuit#1 | | H Ha[A =] — 35| ' 35| —tFnlg| HFrip[=, »

21.

22,

23.

24,

start

=

If you observe the highlight bar carefully, you will notice a dark green color
square at the right end of the highlight. This indicates the inserfion location
where a series contact will be affached. You can change the insertion
location to the left or the right of the highlight bar by pressing the <TAB>

key.

Next, create the contact "RUN" which is parallel to the "Start" contact by

left clicking on the icon. The /O table will appear again. Scroll to
the "Relay" table and select the "RUN" relay.

To insert the normally closed "Stop" contact in series with the "Start" and
"Run" contacts, you need to move the highlight bar to the junction of the
"Start" and "Run" contact. First click on the "Start" contact to select it. Then

click on the E icon to move the highlight bar to the junction, as follow:

£ TRILOGI Version 5.0 - [CATRILOGIATL5\us =181 x|
File Edit Controller Simulate Circuit Help

Cireuit# 1 [[P o o[g g HFnlnl‘iﬂ‘—xl*E;‘

Y

-

[| W

Next, right-click on the icon. It will change into yellow color normally
closed contact as shown in the above diagram. You are now inserting a
normally closed series contact at the location of the highlight bar. Pick the
"Stop" label from the "Input" table to add the series contact,

We will now connect a relay coil "Run" to the right of the "Stop" contact.

Click on the icon to insert the coil. Select "RUN" label from the
"Relay" table. Remember that an input can never be used as a cail.
Fortunately, TRILOGI is ssnart enough not to call up the "Inputs" table when
you are connecting a coil, to avoid unintentional errors.

5-6

25.

26.

27.

28.

30.

31.

Nofice that the coil symbol ---(RLY) indicates that this is a relay coil, which is
helpful in identifying the function of the coil. TRILOGI automatically places
the coil at the extreme right end of the screen and completes the
connection with an extended wire.

Right below the relay coill is a parallel tfimer coil with label name "Duration”.

To create this coail, click on the icon. This allows you to connect a
parallel coil o the existing coil. The "/O" table will pop up for selection
again. Since we want to choose a tfimer, scroll to the "Timer" table and
pick the first timer with the label "Duration” to complete the circuit.

Press the <Enter> key once to complete Circuit #1

Congratulation! You have just successfully created

you very own ladder logic circuit. It is that simple!

We will now create Circuit #2 as shown below.

| RUM Step hanual Seqq
i | vsacl

File Edit Controller Simulate Circuit Help
Cireuit#2 | | o -] — 35| 25| Py '—[Fn]ﬁﬂ]‘_;hﬂj

Run Step Manual

P i] o

-

1] | M

We want to enclose the two series contacts "Step" and Manual' with a
parallel branch that contains two elements. First, we will create the branch
for the N.C. "Manual' contact.

Click on the element "Step" to highlight it. Then right-click on the icon
to create a N.C. parallel circuit that encloses both the "Step" and the
"Manual" contacts. A cross will appear at the left hand end of the "Step"
contact, indicating that this is the starting location of the parallel circuit.
You should now click on the "Manual" contact fo select the ending

5-7

32,

33.

34,

location for the parallel circuit. The yellow highlight bar will be positioned
at "Manual" contact now.

You will notice that the [IF4licon has now changed info a yellow color
N.C. contact _”_'ﬁi‘rh an opposite connection arm. You should now

click on the _”_'ﬁsymbol to close the parallel branch. (One possible short-
cut method is to double-click atf the ending location fo close the branch).

As usual an I/O table will be opened for you to select the I/O. For now,
select the "Manual" label from the "input' table to create the following
circuit:

EgﬁTHiLI]EI Verzion 5.0 - [C:ATRILOGIATL5AusrAsamples\Demo PC5] - [Source: L._. [M[=] E3
File Edit Controller Simulate Circuit Help
Circuit#2 || Y Ha| H 5] — 27| = 2g| —Fnlg| HFnlg[2| » E:I
RUN Step banual -
== -
hanual
L e
1| | Ml .4
Next, we want to insert the special bit "Clk:0.5s" E281/0 Labels
1] 0]
to the left of the Manual® contact. Press the 4[speciar Bits| *
<TAB> key to move the insertion point fo the left 4 | Label Name

end of the highlight bar as shown above. Then e

left-click on the icon to creafe a normally % Ifgﬁlgiéﬂ o
open contact. Scroll the I/O table to the "Special R s
Bits" table and select the item: "0.5s Clock". The 0.05s Clack
Bl C0.1= Clock
parallel branch would have been completed by El .:= u:.:.:
| 2 |@0.53 Clock

NOW. Tohs Clock

=

1
1l min Clock
ETC Error -

| B

Y
HH
3|

Note: The "Special Bit" table comprises some clock pulses and some other
special purpose bits. These include the eight built-in clock pulses in the
system with periods ranging from 0.01s o 1 minute. Built-in clock pulses
are useful if you need a time base to create, for example a "flashing light".
A contact such as "Clk:0.1s" will automatically tumn itself ON for 0.05s and
then OFF for another 0.06s and then ON again, resulting in a series of
clock pulses of period = 0.1 second.

5-8

35. Next, move the highlight bar to the right end junction of the parallel

circuits as follow:

[=3 TRILOGI Version 5.01 - [D:ATRILOGIATL5Ausr\samples? N [u]
File Edit Controller Simulate Circuit Help
_ Cireuit#2 | [[]] —32[= e g P[>
| Run Step hanual =
— —— |
hdanual Clk:0.5=

L | |

A 11
a | _’I

36. Now, click on the icon to insert a special function coil. A popup

37.

38.

menu will appear for you 1o select the desired special function. Click on
the item "4.[AVseq]-Advance Sequencer" to insert the Advance Sequencer
function [AVseq].

Selectafuncton K|
1. [DHCtr] - Decrement Rew. Counter
2. [R2Ctr] - Reset Counter

3. [UpCtr] - Increment PRew. Counter
i Adwvance Secuencer
E_[RE=sey] - Beset Sequencer

& [BteplN] - Set Sequencer to Step #N
7. [Latch] - Latching Belay/Output

2. [Clear] - Clear Latched Relay

9. [ILock] - Interlock EBegin

L [ILoff] - Interlock End

E. [dDIFU] - Differentiate Up

C. [dDIFD] - Differentiate Dowmn

. [CusFn] - Custom Function

E. [dCusF] - Diff. Up Custom Funcs

F. [MaBS3T] - Master EReset

This function is one that will increment the step counter of Sequencer #1
each time its execution condition goes from OFF to ON.

Again, remember to press the <Enter> key to complete Circuit #2

Circuits #3 to #6 are similar to one another. They make use of the
Sequencer to turn on the Outputs 1 o 8 to create a pattern of "running
lights" when executed. The label "Segl:1" of the contact in Circuit #3
represents Step #1 of Sequencer 1. Remember that each sequencer
can have up to 32 steps (Step #0 to 31), with each step individually
accessible as a contact. A normally-open contact "Seq1:1" will be closed
whenever the step counter of Sequencer 1 reaches numiber 1. Likewise a
normally-closed contact "Seg5:20" will be opened when the step counter
of Sequencer 5 reaches number 20.

39.

40.

41,

42.

| Seql: outd

{OUT)
outd
{OUT)

To create the normally-open contact "Seql:1", left-click on the
icon. When the |/O table pops up, scroll to the "Special Bit" table and
select the item #1 "SegN:x". When prompted to select a sequencer
choose "Seqgquencer 1" and another dialog box will open up for you to
enter the specific step numiber for this sequencer.

We have thus far been creating ladder circuits only by clicking on the
ladder icons. A short-cut method of choosing elements to be created
without using the mouse does exist. Observe the icon carefully and you
will notice a small numeral at the lower right hand corner of each icon
that corresponds to the shortcut key. You may wish 1o try this short cut for
the remaining part of Circuit #3. Press the <7> key and the Output table
will immediately pop up for selection of a coil. Pick "Outl" from the
"Output" table and the "Out1" coil will be connected.

Circuits #4, 5 and 6 are very similar to Circuit #3 and you should have
little problem creating them. Complete these circuits and we are ready
for some interesting simulation exercises. When you have created all the
circuits, press <Enter> key or <ESC> key at the last blank circuit to end
"Ladder Edit" mode.

We can make our program more comprehensive to other users by
utilizing the "Comments" feature of TRILOGI. Open the "Circuit" menu and
select "Insert Comment"'. A comment editor window will be opened up to
allow you to add your comments to any part of the circuit. When you are
done with your comments, just press <ESC> key or close the comment
editor window and the comments you just entered will be inserted
between the circuits. Each comment occupies a circuit position and
there is no limit to the number of lines a comment circuit may have.
(However, if you wish to keep data file compatibility with the old DOS
TRILOGI Version 4.x you should limit the comment to no more than 4 lines
per comment and each line should contain no more than 70
characters.)

A comment circuit may be moved around or deleted just like any other
ladder circuits. If you wish to edit the comment, just double-click on it or
press the <Spacebar> 1o open up the comment editor window. You can
use the normal text editing keys such as left, right, up, down cursor keys,
and <Ctrl-Left>, <Ctrl-Right>, and <Backspace> keys for editing
the comment text.

5-10

ll. Testing Your Ladder Logic Program Using The Simulator

The stage has been set and the show is ready! Having completed the demo
program, it is time to tfest if it works as infended using the built-in real-time
programmalble controller simulation engine. Open the "Simulate" pull-down
menu and activate the command "Run (All I/O reset) - Ctrl+F9". TRILOGI will
immediately compile the ladder program and if no eror is detected, it will
instantly proceed to open up the "Programmable Logic Simulator' screen, as
shown below:

Egﬁ Programmable Logic Simulator

ADC1-3 | [| | | | | | Fiig | Select| control [Pause
Input Titmer Courter Relay output Reset
start ﬂ- Duration ﬂ- Segl H-RUI-I ﬂ-nutl ﬂ
stop [| 2= = 2 ourz
Marual = = = B out 3
Step B B B [our 4
[| B [| B0 our &
[| - [| B out e
[| [| [| [our 7
[| g [| B our s
[| = [| =
0 0 A0 0
11 1 1 1
12z 12z 1z 12
13 13 13 13
- & ¥ |44 > A& ¥ |44 -
AR | »f 4 I T I T

1. If you have followed closely all the instructions during the creation of the
demo program, you should not encounter any compilafion error.
However, if you do receive an error message, then please check your
circuit against the picture shown in the assignment page, then make all
the necessary corrections and then fry again.

2. The simulator screen comprises 5 columns: Input, Timer, Counter/
Sequencer, Relay, and Output. With the exception of the Relay table that
contains up to 512 elements, and the Timer table that contains up to 128
timers, all other columns contain 256 elements each. Every column has
its own vertical scroll bar. You can use the mouse to scroll each column
independently 1o locate the desired 1/O.

3. The label names for the inputs, outputs, relays, fimers and counters
defined earlier in the /O tables automatically appear in their respective
columns. To the left of each label name column is an "LED" lamp column
that indicates the ON/OFF state of respective 1/O. A red color lamp
represents the ON state of an /O, whereas a dark gray color lamp
represents an OFF state. The I/O number is indicated in the middle of the
lamp.

The simulator require the use of the mouse to work properly so it is
important to remember the mouse button actions as follow:

Turn ON the I/O when pressed.
Turn OFF when button is released.

Toggle the I/O when pressed once.
(i.e. OFF becomes ON and ON become OFF)

Left Mouse Button

Right Mouse Button

Our ladder program requires us to "push" the "Start" button momentarily.
You can simulate this action by moving the mouse pointer to the "Start"
label (or the LED lamp) and press the LEFT mouse button once and then
release the button. The action starts!

At this time, notice that the relay "RUN" is latched ON and the timer
"Duration” begins to count down from the value of 1000 every 0.1sec,
and the Output #1-#8 are turning ON/OFF sequentially in a "running light"
paftern. Sequencer "Seql" in the "Ctr/Seq" column begins to count
upward from 1 to 3 and then overflows to O and repeats continuously. For
each step of the Sequencer, the corresponding Output will be turned ON.
Our demo program will show a running light paftern starting from Outputs
1&8,then2&7,3&6and 4 & 5andthenbackto1 & 8,2 & 7.....

Now you should verify that the logic works as intended by observing the
ladder diagram. You should nofice that the "Run” labels in all circuits are
highlighted as shown below:

E%%THiLI]EI Verzion 5.0 - [C:ATRILOGIATLS usrksamplesi\Demo.PCH] - [Source: L. [H[=] B4
File Edit Controller Simoulate Circuit Help
Circuit # 3
star Stop =
1 (RLY)
Cruration
— — T
Step Manual [Seql |
Pt avseq
Clk:0.5= Manual
| | ik
11 A
Seqgi outd
[|1 {OUT)
outd
L ouT)
ol | AW

5-12

10.

11.

12.

13.

The logic states of any I/O can be displayed on the ladder diagram
directly. An Input, Output, Relay, Timer or Counter contact that is turned
ON will have its label name highlighted in the ladder diagram. This
feature helps greatly in debugging and understanding the logical
relationship between each 1/O. For example, from the above figure, we
can see clearly that the "Self-latching" circuit for relay "Run" works as
intended: when we first turn ON the "Start" input, "Run" will be energized
and its contact which is parallel to "Start" will hold itself in the ON state,
even if we subsequently turn OFF the "Start" input by releasing the button.

The timer coil "Duration’, being connected in parallel to "Run" relay, will
also be energized. However, its contact will only be closed after 100
seconds (when its present value counted to 0). To break the latched On
"Run" relay, we must energize the "Stop" input momentarily to break the
"oower" flow. Try it now.

Let's restart the system by turning ON the "Start" input momentarily again.
Next, we want to turn ON the "Manual" input. Move the mouse pointer to
the "Manual" input and then press the right mouse button. "Manual" input
will be "stuck at "ON" state even after you have released the right mouse
bufton. Click on "Manual" button using the right mouse button again and
it will be turned to OFF.

When "Manual" input has been turned ON, the running lights should stop.
This is because the normally closed contact of the "Manual" input in
Circuit #2 is now turned OFF and the 0.5s clock pulse could not frigger
the [AVseq] function anymore.

If you now left-click on the "Step" input, the running lights will move one
step at a time in response to your mouse click. Observe the Seql:x
contact with respect to the counter value of Seq1 and the logic of this
circuit become very clear instantly.

Observe that the timer "Duration" continues to count down every 0.1
second, and when it reaches 0, the "Duration" output coil label will be
highlighted. You can use this timer to stop the program by connecting a
N.C. "Duration" contact to Circuit #1. This is left as an exercise for you!

lll. Transferring Your First Ladder Program To The PLC

After having tested your ladder logic program on the simulator, you are
probably eager to try out the program on the actual PLC! Here are the quick
steps:

2,

Connect the DB9 programming cable from the PC COM port to the PLC's
COMMT1 port.

Connect power to the PLC

5-13

Run the “TLServer” as described in Chapter 3. TLServer must be running
before you can have any kind of communications with the PLC.

Click on the “Setup Serial Port” buffon and test the communication with
the PLC by entering the "IR*" string info the *Command” box. You should
receive a "IRO1*" response from the PLC (provided the default ID=01 has
not been changed). If you face any communication problems with the
PLC then you will have to troubleshoot it first by making sure that (a) the
correct COM port is used, and (b) no other program (e.g. a PDA cradle) is
currently controlling the COM port that is used with the PLC.

Next, click on the “"Conftroller” menu and select “Program Transfer to PLC".
You will be asked to login to the TLServer. If no one has changed the
default info you should see the following screen:

Server's Uszsername/Paszsword

X
TLSemer's IF Address : port

[127.0.0.1:9080 Detect ID | |_

(Singe nade) 1D (Hex)

[Use Hitp Proxy Server

Usermarne |samp|es

Password: I

[+ Merorize Username & Passward

Cancel | I I

Please enter PLC's D

The default IP address:port is 127.0.0.1:92080. This is the localhost IP
address and should be the one used when both TLServer and TRILOGI
client are running on the same PC. There is a default user defined in
TLServer with the username “samples” and no password which is what we
will use for now.

Next, click on the "Detect ID” butfton. If all go well the ID ‘01" will appear in
the box next 1o the “Detect ID” button. Otherwise you will receive an error
message that explains what did not go right.

If you have received an ID correctly, you can then click the "OK" button.
TRILOGI will compile the program and then begin transferring the
compiled codes into the PLC. Just follow the steps on the screen until the
entire program tfransfer procedure is completed. Then click on the “Yes”
button when you are asked if you wish 1o "Reset all I/Os?”.

Before you actually turn on the physical inputs to the PLC to test the
program, we would like to show you how you can actually control the
PLC’s I/O from TRILOGI software. First, click on "Conftroller” menu and select
"On-Line Monitoring”. You should see the “Full Screen Monitoring” window

5-14

10.

11.

12.

13.

that looks identical to the “Programmable Logic Simulator” screen that
you have seen earlier while testing your program on the simulafor.

The logic states of the inputs, outputs, relays, timers and counters that you
see on the “Full Screen Monitoring” screen are linked to the PLC’s actual
inputs, outputs, relays, timers and counters. When performing on-line
monitoring, TRILOGI software contfinuously sends out serial communication
commands to retfrieve the data from the PLC and display them on the
screen.

Next, ensure that the “Control” check box on the monitoring screen is
checked (selected). You will now be able to remotely trigger any of the
PLC’s input by clicking on its lalbbel name. Try to click on the “Start” input
once and you should see the running lights on the PLC outputs. Click on
the “Stop” input and the running light should pause. The running light will
also be reflected on the “"Output” column of the “Full Screen Monitoring”
window.

Please note that when you click on an input label, TRILOGI actually only
mMmanages to change the input bit for only one scan time. Thereafter the
PLC will update the “Input” bit using the actual logic states of the physical
input.

Next, pause the PLC by pressing the "Pause” button. You should see that
the “Pause” light on the PLC being furned ON. Now, you can actually tumn
ON the physical outputs or internal relays of the PLC by clicking on any
output label using the LEFT mouse button. Releasing the LEFT mouse
button on the output will turn it OFF. You can even latch ON or OFF an
output by clicking on the label using the RIGHT mouse button. Try it — it can
be fun!

Summary

We have completed this tutorial and have successfully created a simple
ladder program. We have also performed real fime simulation to test the
program's functionality and have fransferred the demo program into the
PLC via the TLServer. By now you would probably have a good
appreciation of TRILOGI's superb capability and ease of use and are ready
to include TRILOGI as an integral part of your programming needs!

5-15

Chapter 6: TRILOGI Ladder Logic Editor Reference

TRILOGI's ladder logic editor window lies between the main menu bar along
the top of the screen and the help message line along the bottom of the
screen. The cursor will appear in the window whenever you are in the logic
edifor. The ladder logic editor comprises two modes: the Browse mode and
the Circuit Editing mode. We shall explain the operation of both modes

|. The Browse Mode

You are normally in the browser mode when you start up the program. The
browse mode allows you to manipulate the whole ladder logic circuit as a
single entity: you can view any circuit, make copies of it, move it to another
location or deletfe it entirely. Each complete ladder logic "circuit" is given @
circuit number. You should see a small red color marker showing you the
currently selected circuit. The circuit number of the selected circuit is shown
on the upper status line as "Circuit # xxx ",

1. Mouse Actions

Since TRILOGI Version 5.x runs under windowing environment, all usual
mouse action applies. You can grab the vertical scroll bar to scroll 1o your
desired circuit and click on it to select it. Double click on a circuit enters
the Circuit-Editing Mode, which will be described Iater.

2. Keyboard Actions

The functions of various keys in the browse mode are explained below:

Allows you to enter circuit editing mode for the
<Spacebar> | cyrently selected circuit. If the selected circuit is @
comment circuit, the comment editor will be opened
automatically.

<F1> Activates the help function to display on-line

help.

Opens the |/O Table to create the /O Label
<F2>

Name

Tumns ON/OFF display of the /O type for ladder logic
<F3> confacts on the screen. All ladder logic contact

symbols are normally identified by their label names.
However, you can also display an optional small literal
to indicate the I/O types. e.qg. i=input, o=output, r=
relay, t= timer and c=counter.

6-1

Refreshes the display. If for some reason the screen is
garbled by incomplete circuit display, you can just
press the <F5> key to redraw the screen.

<F5>

Opens any custom function. If the currently selected
circuit contains a custom function, then it will
e opened for editing. Otherwise TRILOGI will ask you to
select a custom function # from a menu.

<F7>

Compiles the TRILOGI program to show the

<F8> | compilation statistics.

<F9> Runs the simulator without resetting any /O

<Ctrl-F9> Resets all I/Os and then runs the simulator.

Resets all 1/Os except inputs and then runs the

<Ctrl-F8> ,

simulator.

Use the up/down cursor keys to move the marker to

other circuits and the "Circuit #" display at the upper

<Up>/<Dn> : o

status line will simultaneously reflect the change. If you
<PgUp>) :
<PgDn> attempt to venture beyond the screen, the logic editor

screen will scroll. The <PgUp> and <PgDn> keys can
e used fo scroll one page at a time.

3. Using the Circuit & Edit Menu

The “Circuit” and Edit menus contain various commands that you may
need for adding comments, copying or delete circuit as well as and for
re-arranging the order of the ladder circuits. Please refer to Chapter 7 for
descriptions of the actions associated with each item in this menu.

EE’,%THiLDEI Yerzion 5.0 - Untitled_pch
File Edit Controller Simulate ESEHIE Help

Circuit 3 2 =Pl VAR e s B for context-sensitive Helps

Insert Circuit -
Mowe Circuit
Append Circuit

DEFHGME Delete Circuit Frn_#i0

[r— 10 rycusF)

START Fri_#i1
il 1 rarn=m1

6-2

| E%%THiLI]EI Verzion 5.0 - [C:ATRILOGIATLSusrisamplesili-Then-Else PC5] - [5... M =] E3
. File W=pli® Controller Simulate Circuit Help

] Abeort Edit Circuit FPress F1 for context-sensitive Helps

Tndo Ctrl+2 -

Cut. Circuit

Copy Circuit Ctrl+C meand

. Paste Circuit Ctrlty PEhlock iz optional.
% Find Ctrl+F Fri_#

e 1 sk}

Goto Ctrl+i&
i
| I/0 Table FZz

View IS0 Type on Ladder Fz

Edit Custom Function F7? fring comparison

A Fiil=)
Clear Custom Function
MNOTEQUIAL Frn_#&2 e
il 2 rarzEl
+] | v 4

[I. The Circuit-Editing Mode

TRILOGI comes with a smart editor that allows you to insert or delete a
single element within a circuit easily. The editor interprets your circuit
immediately upon entry and prevents you from creating illegal circuit
connections. The functions of various keys in the circuit-editing mode are
deftailed below. You know that you are in the circuit editing mode when a
row of ladder logic icons appears along the upper status line next to the
circuit number and a yellow color highlight bar appears and you can
move it to select an element in the ladder circuit, as shown below:

E%%THiLI]EI Version 5.0 - Untitled_pch
File Edit Controller Simolate Circuit Help
Circuit#1 [[Ha H g —C 37] = yo] —Frig] HFnlg| Z5p] »
|
1| | AL

1. Mouse Actions

Left Click - When you click on an element using the left mouse button, the
element is selected and highlighted by the yellow color highlight bar.

Right Click - When you click on an element using the right mouse button,
you are allowed 1o directly edit the label name of the element. This can be
a convenient feature if you need to change one or two characters in the
name only. However, if the element is a custom function [dCusFn], or
[CusFn], then the custom function editor will be opened for you to edit the
function directly.

Insert Ladder Element - You create the ladder circuit element simply by
moving the mouse pointer to the icon and pressing either the left or the
right mouse buffon to insert a ladder logic element to the curently
highlighted element. The following is a description of the functions of each
icon. A yellow color highlight bar will appear which you can move to select
an element in the ladder circuit.

<1> - Left click to insert a normally open series contact.
Ul <2> - Right click to insert a normally closed series contact.
<3> - Left click to insert a N.O. parallel contact to highlighted
element
<4> - Right click to insert a N.C. parallel contact to highlighted
element
<5> - Left click to insert a N.O. parallel contact to enclose one
or more elements.
<6> - Right click to insert a N.C. parallel contact o enclose one
or more elements.
B <7> - Insert a normal coil, which may be an output, relay, timer
L or counter.
T <8> - Insert a parallel output coil (not an entire branch) to the
: current coil.
S <9> - Insert a special function coil which includes execution of
c CusFn
Frly| | <O> - Insert a parallel special function coil to the current cail.
</> - Invert the element from N.O. fo N.C. or from N.C. to N.O.
Click to move the highlight bar to the right (same effect as
E pressing the right arrow key). This can be used to move cursor to
a junction that cannot e selected by mouse click.
Double-click fo delete a highlighted element.

6-4

When you click on an icon, for example, the , the icon will change to
bright yellow color to show you the element type that you are creatfing. At
the same fime, an /O table should appear on the screen with a light
beige-color background. The 1/O table acts like a pop-up menu for you to
pick any of the pre-defined label names for this contact. This saves you a
lot of typing and at the same time eliminates typo errors that could result in
a compilation failure. You should spend a few minutes to follow the
"Chapter 5: Ladder Logic Programming Tutorial' on the steps needed to
create a ladder program.

As mentioned previously, the ladder editor is infelligent and will only accept
an action that can result in the creation of a correct ladder element.
Ofherwise it will simply beep and ignore the command.

UNDO Circuit Editing

If you have wrongly inserted or deleted an element and wish to
undo the mistake, you can either select "Undo" from the "Edit"
menu or press <Ctrl-Z> key to undo the last step. The undo buffer
stores the last 10 editing steps. You can also choose to abort all
the operations on the current circuit by selecting "Abort Edit
Circuit" to abort all changes made to the current circuit.

. Create Ladder Circuit Using The Keyboard

Users of existing TRILOGI version 3.x or 4.x who are familiar with creating
ladder programs using the keyboard will be delighted to know that they
can sfill create their ladder programs using the keyboard. The keyboard
acftions are described below:

Left/Right/Up/Down cursor keys

The cursor keys are for moving the highlight bar from one element to
another in their four respective directions. You can only move in a
direction that will end up with an element.

<ESC>

Press <ESC> key to end the circuit-editing mode and return o the
browse mode of the logic editor.

6-5

<Enter>

When you are done with edifing the current circuit, hit <Enter> fo
proceed to the next circuit.

<Tab>

If you observe the highlight bar carefully, you will notice a dark green
color square at the right end of the highlight. This indicates the
insertion location where a series contact will be attached. You can
change the insertion location to the left or the right of the highlight
ar by pressing the <TAB> key.

The position of the cursor has no effect when you connect a parallel
contact to the highlighted element. The left terminal of the element
will always e connected to the left side of the parallel branch.

<0>to <9> , </> & <E> keys

Pressing the key <0> to <9> and </> is equivalent to clicking on
the icon shown in the table. The equivalent keyboard number is
shown as a small numeral at the lower right comer of the icon. The
</> key is the quickest way of converting a normally open contact
to a normally closed one (and vice versa).

Pressing the <E> key when a contact or coll is selected allows you fo
edit the label name directly. Note that it is the user's responsibility to
ensure that the label is valid.

6-6

Chapter 7: TRILOGI Main Menu Reference

Both TRILOGI application and applet programs have nearly identical look
and feel (as shown below), with the exception that the Applet can’t save o
or load from local drive and it does not support the “Printing” function.

ples\D emo. -10] x|
File Edit Controller Simulate Circuit Help
Circuit ¥ 2 Press F1 for context-sensitive Helps
Start Stop Run =
4 ——4F RLY) B
Run Duratian
g | L (TIM)
Run Step Manual Seql
P 4 —| sl
hdanual Clhk0.5z
e I -
i | i

The main body of the program window is for displaying and editing your
ladder logic program. A ladder logic program is made up of many ladder
"rungs”. In TRILOGI we call each ladder rung a “circuit” with an associated
“circuit number”. The currently selected circuit is marked by a little red
tfriangle pointed to the circuit’s intersection with the left vertical line (a.k.a.
the “power rail” in ladder logic terminology)

The circuit number of the selected circuit is displayed on a button located
just above the top left corner of the ladder editor window. If you happen to
click on this bufton, a dialog box will popup that prompts you to enter the
circuit number that you wish to go fo and the editor will bring you there
immediately.

File Menu

The File menu provides commands for the opening/saving of TRILOGI files
either on the local hard disk or on the TLServer's storage space.

1. New <Ctrl+N>

Activate this coommand when you want o create a new ladder logic
program. All current ladder circuits and custom functions will be cleared
from the screen and the default filename is "Untitled.pcb".

7-1

2. Save <Ctrl+S>

This command saves the whole ladder logic program, all I/O tables and
all the custom functions to the disk. The current file will be saved to the
same source from which it was opened from, i.e. If a file has been
previously opened from the TLServer via the network, this command will
save the file back to the TLServer. Likewise, a file opened from the local
hard disk will be saved automatically to the local hard disk.

3. Open (TLServer) - <Ctrl+0>

This command is for loading a TRILOGI file from the TLServer. When
executed, you will be prompted to enter the Username and the
Password to gain access to the TLServer. (The same Username and
Password must have already been defined in TLServer for this to work). If
you are running TRILOGI as a local application instead of as an
applet, you may be required to enter the "IP Address: port" of TLServer in
order to connect to TLServer. (Note that last entry of IP Address: port is
saved to the TLS configuration file and will be loaded when the TLS
application re-starts).

Each user has his/her own exclusive directory for storing his/ner TRILOGI
files. Once authenticated, a network file dialog will be opened for you to
select a file, delete a file or create a subdirectory, as shown below:

Open files stored at TLServer | Open files stored at TLServer |

Filename: Isubdir'l! Filename: I[..I]

Current Dir; Cutrent Dir: subdirt}

T

Stepper.PCh

isuhdirl/

Qpen
Analog-Timer.PFCS p

backup. 001
backup. 00z
backup. 003 Cancel Cancel
call.PCS
Clock.PCE
Demo. PCS Delete Delete
EEPROM.pcE
For-Next.PCS

Goto.PCS

GOTOZ.BAK

gotoZ.pch
HighapeedCtr. PCE
If-Then-Elzse.PCS
IndexTahle.PCS
Interrupt.PCE ;i

hkDrir MkDir

Simply double-click on the desired file or select the file you wish to open
and click the "Open" button to open the TRILOGI file.

7-2

Sub-directory: The MkDir button allows you to create a sub-directory on
the server to organize your files. Subdirectory names always end with @
"/ character. If you open a subdirectory its contents will be displayed in
the file window. To return to the parent directory from a sub-directory,

you simply double-click on the symbol.

4. Save As (TLServer)

Use this commmand if you wish to save the currently edited TRILOGI file to
the TLServer using a different filename. You will be prompted to enter
the Username/Password (and IP address if it is a TLS application) to gain
access to TLServer. Once authenticated, the network file dialog similar
to that described in "Open (TLServer)" will be opened for you to enter a
file name or select a filename to overwrite,

5. Open (Local Drive) / Save (Local Drive)

For TL5 Application (not Applet) you can open or save a file from/to the
local hard disk. You will be presented with the ftypical file dialog
provided by your O/S. This command however is not available to the TLS
Applet since an applet does not have the right to access local hard
disk resources.

6. Print

For TL5 Application (not Applet), you may use all the prinfing resources
supported by your O/S to print a selectable range of the ladder
diagram, the 1/O Tables or the custom functions. When executed the
following "Print Control Panel" will appear:

E%’,a Print Control Panel =10 x|
Print Page setup Print preview

Print: [Ladder Circuits =] Width |1D

Ladder Circuits
10 Tahles
Custom Functions

neone [

To print, first select the item from the choice box and define the range
you wish to print and then click on the "Print" button. For "Ladder
Circuits", the range indicates the circuit numbers. For "l/O Tables", the
range indicates the I/O number (up to 256) and for "Custom Functions",
the range is the function number.

You can use the "Print preview" buttfon to check the pagination of the
printing on screen. You can select paper size and print orientation, etc.
by clicking the "Page setup" bufton. Empty custom functions will be

7-3

automatically skipped to save paper. When you select to print the
"Ladder Circuits" a special "Width" textbox appears. This textbox is for you
to enter the maximum numiber of series element that can be printed on
the paper width. Changing this numiber affects the scaling of the ladder
diagram when printed. The smallest number is 5 and largest numlber is
13. Use a smaller number if you wish to have a larger printout. However,
please note that if your ladder program contains circuits with more
elements than that indicated by the "Width" parameter the "out-of-
page" part of those ladder circuits will not be printed.

Note: The "Print" function requires the support of Java 2 JVM (which is
provided by Java Runtime Environment version 1.3.1 when you installed
it) but most browsers to-date do not yet not support Java 2 unless with a
special Java plug-in. It is for this reason that the "Print" function is
disabled when you run TRILOGI as an Applet.

7. Exit

Execute this command to exit orderly from the TRILOGI program. You will
be prompted to save the current file if the contents have been edited
and the changes have not yet been saved.

II. Edit Menu

1. Abort Edit Circuit

Changes made to the current ladder circuit can be aborted if you
execute this command before pressing <Enter> to accept changes
made to the current circuit. If changes have already been accepted
by pressing the <Enter> key, then this command will have no effect.
This command is useful if you wish to completely abandon changes
you have made to a circuit without going through all the undo steps.

2. Undo <Ctrl+7Z>

Undo the last changes made to a ladder circuit. TRILOGI automatically
stores the last 10 edited steps so you could execute undo several times
to restore the circuit back fo ifs original shape.

3. Cut Circuit - <Ctrl+X>

You can remove a number of circuits from the current ladder program
and store them temporarily in the cliplbboard for pasting into another part
of this ladder program or info another file alfogether. In other words, it
lets you move a block of circuits from one part of the ladder program
to another part or into another file. Once you execute the "Cut Circuit"

7-4

command, a prompt box as shown below will appear. You have to
specify the range of the circuits you wish to cut and press the "Yes"
bufton to remove them from the ladder program.

[3 Cut Ladder Circuits to Clipl hoar |

From Circuit # |1
Tao Circuit # |1

Canfirm Cut Circuits? (Can't Undall

o No |

* Please note that you can't UNDO a Cut Circuit operation.

Copy Circuit (Ctrl+C)

You can copy a block of circuits from the current ladder program and
store them into the clipboard for pasting into another part of this ladder
program or into another ladder program file altogether. The range
dialog box similar to "Cut Circuit" will appear for you to enter the range
of circuit to copy.

Paste Circuit <Ctrl+V>

When you execute this command, the block of ladder circuit that you
"Cut" or "Copy" into the clipboard will be pasted just before the currently
selected circuit. The current circuit number will be adjusted to reflect
the change.

Find <Ctrl+F>

The Find command allows you to quickly locate a ladder logic circuit
that contains a particular label name. This is useful for searching for the
activity of a particular 1/O in the program. The Find command can also
be used to search for a keyword in a TBASIC program. When this
command is executed you will be further prompted to select the
options of either searching for a ladder logic label or finding a text in a
Custom Function.

[Find Label L x| f3 Find Text in CusFn x|
Label MNatne: I Textto Find: I

F2 key - select fram i Tahle

7-5

Find Ladder element: you can enter into the text field a sting that
parially or fully matches the label name you wish to locate. You can
also press the <F2> key to open up the /O table and pick the label
name from the I/O table.

Find Text in CusFn: TRILOGI will search through all the custom functions
to locate the text that matches your entered text. The first CuskFn that
contains a match will be opened up for you to read. You will then be
prompted to indicate if you wish to continue the search. Note that the
text window in the custom function editor window is read-only during
execution of the "Find Text" command.

If you click "No" at the prompt dialog, the last opened CuskFn will stay
open. However, at this stage the content in the Custom function editor
is still read-only. If you wish to edit text in the CusFn you will need to click
on the text window and it will be enabled for editing. This feature is
implemented to prevent accidental changes to the custom function
during the search process.

Goto <Ctrl+G>

Use this command to move towards a specific circuit numiber. The
"Goto" command is particularly useful if your program contains many
circuits, and it is inconvenient to search for a particular circuit using the
mouse or the cursor keys.

I/O Table <F2>

Open up the |/O Table for defining lalbel names for the PLC's I/O. For
detailed explanation of I/O tables, please click on the following link: /O
Definition Table

9. View I/O Type on Ladder <F3>

10.

Toggle between display or no display of the 1/O type for ladder logic
contacts on the screen. All ladder logic contact symbols are normally
identified by their label names. However, you can also choose to
display an optional small literal to indicate the I/O types. E.Q. i=input,
o=output, r= relay, t= timer and c=counter. When TRILOGI first starts,
the display is enabled but you have the option of tumning it off if you find
it distracting.

Edit Custom Function <F7>

Opens up the Custom Function Editor window for you to enter the
TBASIC program. You will be required to select the custom function
number or a label name from the Cuskn table (which is part of the I/O
Table) . Each TRILOGI file can contain a maximum of 256 custom

7-6

11.

functions. Each custom function will be opened in its own window. The
custom function numiber and the optional label name will be displayed
on the Title of the Custom Function editor window:

E%%Eustum Function #1 -

r Exawmple use of multiple IF-THEN-ELSE e
' Each IF statement must hawve an ENLIF
' EL2E i= optional.

Az=THNPUT: (1)

A = WAL (AZ)

IF & = 0 THEN

PRIMNT #2 " Walue entered = ";4;" i= greater than
DM[1] = A*10

-
1 | 3

Select Function Edit Fn Mame | E«iﬂ _ﬂﬁ!

You can scroll from one custom function to the next one using the
=<l 2] keys. However, clicking on the =4 and 24 buttons allows you to
scroll to the previous or the next non-empty CusFn. All empty functions
will be skipped. This is useful if you need to browse through all the
custom functions to locate something.

If you wish 1o copy/cut text from one CusFn and paste to another you
will have to use the <Ctrl-C>, <Ctrl-X> and <Ctrl-V> keys.

Clear Custom Functions

This commmand allows you 1o select a range of custom functions whose
content you want completely cleared. You will be prompted to select
the range of custom functions to erase. Note that this action is not
undoable.

Controller Menu

All commands in this menu are for communication with the PLCs via the
TLServer. Hence the TLServer must be actively running and connected to
the PLC(s) via its serial port before the commands here can be
successfully executed. Note that TLServer can be running on the same
computer that TRILOGI is running on (using localhost IP 127.0.0.1), or on
another computer in the same local area network, or anywhere in the
world with an Internet connection. The experience is identical regardiess of
where the TLServer (and hence the PLC) is situated.

7-7

If there is no existing connection made to the TLServer, then execution of
any command in this menu will always bring up the password dialog for
you to enter the Username/Password as well as the IP address:port of the
TLServer. You must be positively authenticated before you are able 1o log-
in to the TLServer. See “Log In to TLServer” for detailed explanation of the
Username/Password Dialog box. Once you have login to the TLServer, see
explanation of each function below:

1.

Select Controller <Citrl-I>

The only editable field is the ID field. You have to enter the ID address
in hexadecimal notation (00 to FF). This command allows you to
select another PLC that is connected to the same TLServer but with a
different ID for on-line monitoring or program transfer.

Connect/Disconnect to Server

Use this command to log-in to the TLServer only if you have no
intention to perform other controller commands. You may find that
you seldom need to use this command since running the On-Line
Monitoring or Program Transfer commands will also let you log-in to
the TLServer if you have not yet done so. However, once you are
connected, this command changes into "Disconnect from Server"
and this is the only way for you to log out of the currently connected
TLServer so that you can use the Username/Password dialog box to
log-in as a different user, or to log-in 1o another TLServer of a different
IP Address/port number.

On-Line Monitoring <Ctrl4+M>

See On-Line Monitoring help document for details.

Program Transfer to PLC <Ctrl+T>

This command is only available if your log-in username is assigned
the access level of a "Programmer”. If you login as a "User" or "Visitor",
this command is disabled from the Controller's menu. (It will be
enabled again after you disconnect from the server)

You can use this command to transfer your TRILOGI ladder +TBASIC
program info the PLC. You will be prompted to confirm your action to
prevent accidentally affecting the target PLC. The ladder program
must be compiled successfully before the program transfer process
can take place. The progress of the fransfer process will be clearly
shown on the program transfer dialog box.

7-8

5. Open Matching Source File

You can use this command to query the connected PLC for the
flename of the last TRILOGI program transferred to it and it will
attempt to match it to a file stored in the log-in user's directory at
TLServer. If the file is found, it will be opened. Otherwise it will report
that the file is not found. Note that this command only opens the
source file based on file name matching. It does not verify whether
the file has been modified. It is the user's responsibility 1o ensure that
the file stored in the server is the same one that has been compiled
and tfransferred to the PLC.

Note that if you have created a new file (i.e. the file name is "Untitled”)
and then aftempt to perform on-line monitoring, this command will
be called automatically to try to open a file that matches the PLC.
The command is also invoked when you select a PLC with a different
ID either from the "Confroller" menu or from within the "Full-Screen
Monitoring" window.

6. Get PLC's Hardware Info

You can find out the PLC's frmware version number, the maximum of
input, outputs, relays, timers and counters supported on this PLC as
well as the total amount of program memory available. The same info
will be displayed when you try to transfer a program to the PLC.

7. SetPLC's Real Time Clock

The PLC's real time clock (RTC, which includes both date and time)
can be set quickly using this command. When you execute this
command, a dialog box that contfains the year, month, day, hour,
min, sec and day of week are displayed for you to enter the value.
The dialog box is initially filed with value taken from the clienf's
computer's own calendar and clock. You can change any of the field
to the desired values and then click on the "Set PLC's Clock" butfton:

[E3 Set Target PLC's Real Time Cloel X|
Month Day ear Day 1-7
|3 |2? |tznu3 |4

(Thu)

|11 |34 |1n
Haour Min Sec

SetPLC's Clock | Cancel |

7-9

The dialog box will be closed after the TRILOGI has transferred all the
data to the PLC. You should use on-line monitoring to verify that the
data has indeed been properly written into the PLC.

Note that the "Year" field is restricted to only between 1996 and 2096,
"Month" is between 1 and 12, "Day" is between 1 and 31, "Hour" is
between 0 and 23, "Min" and "Sec" are between 0 and 59. If you
enter an illegal value TRILOGI will beep and the cursor will be put at
the offending text field. Correct the mistake and then click on the "Set
PLC's Clock" buffon again to transfer the values to the

IV. Simulate Menu

TRILOGI allows you to perform almost 100% simulation of your PLC's
program off-line on your PC. This is a great tool for testing a program
quickly before a machine has been manufactured. It is also a wonderful
tool for all new PLC programmers to practice their ladder logic
programming skill without the need to purchase a PLC test station.

TRILOGI automatically compiles a ladder program before activating the
simulator. If an eror is found during compilation, the eror will be
highlighted where it occurs and the type of error is clearly reported so that
you can make a quick correction.

1. Run (All /O Reset) <Ctrl+F9>

This should be the option to use when you first begin to test your
TRILOGI program. When executed, all /O bits (including inputs) are
cleared to OFF state, all integer data are set to O and all string data
are set to empty string. Then the "Programmable Logic Simulator”
window will open for you to conduct the simulatfion test of your
TRILOGI ladder program.

2. Run (reset Except i/p) <Ctrl+F8>

Very often you may wish to keep the input seffings "as is" when you
reset the simulator. This situation is quite redlistic in the sense that
when a PLC is powered-on, some of its inputs may already be in the
ON state. (e.g. sensors may detect the end positions of a cylinder
rod, etfc). This command allows you to preserve the logic states of all
"Inputs" while resefting all other data. Note that the <Ctrl-F8> key
also works in the "Simulator' screen so that at any time you can reset
the simulator without affecting the logic states of the inputs.

7-10

3. Continue Run (no reset) <F9>

Use this commmand to confinue simulating the program since you last
closed the simulator. All previous data are kept infact and will be
used by the simulator o continue execution of the ladder program. If
you have made changes to the ladder program or custom functions,
the whole program will be recompiled before running.

Note that first scan pulse (1st.Scan) will not be activated when this
command is executed since this is supposedly a continuation from
the previous simulation run. This command can be useful if you have
discovered a simple bug in your soffware during simulation, you can
fix it immediately and test the effect of the change on the simulator
instantly without restarting the entire simulation session from the
beginning again.

4. Compile Only <F8>

Allows you to compile the TRILOGI file only in order to view the
compilation statistics:

Egﬁ Compilation

Success |
Total Mumber of circuits 6
Ladder Diagram fwords) 26
Custom Function éaxords) 1]
Total code Size 26

Checksum = 05FD

5. Reset All I/0s <Ctrl-R>

Clears all 1/Os in the simulation engine without invoking the simulator.
Since all I/Os whose logic states are turned ON in the simulator will also
e shown as highlight on the ladder diagram, this offers a way to clear
the I/Os if it hinders your viewing of the ladder program.

7-11

V. Circuit Menu

1. Insert Comments

Comments are specific remarks used by a programmer to explain
various characteristics of a program segment and are ignored by the
compiler. TRILOGI Version 5.0 allows comments to be freely inserted
between circuits. Execute this command and the Comment Editor will
e opened. The comment editor allows you to enter any text you like
that best describe the working of the circuit. All standard text editing
keys, including cut and paste are applicable to the Comment Editor.
When you have finished editing the comment, press <ESC> key 1o
Close it.

Once a comment has been created, it is assigned a circuit number
and is treated like any other circuits. You can edit it by pressing the
<spacebar> when you are in Browse mode, alternatively, you can
move it around, copy it 1o another destination or delete it entirely
using commands in the "Circuit" menu.

2. Insert Circuits

This command enables you to insert a new circuit just before the
currently selected circuit, The current circuit number will be increased
by one while the new circuit will assume the current circuit number.
You will be placed in the circuit editing mode for immediate circuit
creation.

3. Move Circuit

You can rearrange the order of the circuits by using this command.
Select the circuit you wish to move and execute the "Move Circuit"
command, then select a destination circuit location and press
<Enter>. The selected circuit will be moved to the new location
before the destination circuit.

Note that if you wish to move a block of circuits to a new location,
you may find it more productive to use the "Cut Circuit" and "Paste
Circuit" commands in the "Edit" menu.

4. Append Circuit

Execute this to add a new circuit to the ladder logic program. This
new addition will be positioned immediately after the last circuit in the
entire program.

7-12

5. Delete Circuit

This command allows you to delete the one or more circuits. You will
be prompted to enter the range of circuits that you wish to delete.
Please note that you can't UNDO a delete circuit operation.

VI. Help Menu

All contents in this manual are available for instant reference on the
computer where the TRILOGI program is running. This includes running the
"applet” version of TRILOGI program on a remote browser because the
relevant help files will be retrieved from the TLServer automatically.

You can call up the help files anytime by pressing the <F1> key. You can
also select the “Content” item from this "Help” menu to bring up the
content page of the entire on-line TRILOGI help files. On the content page
you can find the links to the Ladder Logic Editor and the entire TBASIC
language reference.

Instant Help for TBASIC Keywords

One convenient feature implemented in TRILOGI Version 5.x is the ease of
getting help for the syntax of a known TBASIC keyword. E.g., if you want to
find the syntax for the keyword “READMODBUS’, instead of navigating
through the help file links, you can simply select the “READMODBUS”
keyword in the custom function editor and then press the <F1> key. You
will be immediately presented with the help document for “READMODBUS”
command as illustrated in the following screen shots.

ﬁg Custom Function #10 - x|

Press the <F1> key once after
you have selected the
keyword of interest,

o o

Select Function Edit Fn Mame | ﬂil 1'32'

7-13

=> The help file for the keyword will be immediately loaded by Internet
Explorer, as follow:

/3 readmodbus - Microsoft Internet Explorer

J File Edt ‘“iew Favortes Toolz Help

|€«-=» -0 QEFBH-SHEHRB S | Googe-|

»
V”

=101 x|

J Addrezs @ DATRILOGIST LA publiciHelphtbazichreadmodbuz. hitm

j & Go

* READMODBUS (ch, DevicelD, address) " Applicable only to M+ PLC models}

Purpose

Automatically query a MODEUS ASCI device and return the 16-bit
register data using the MODEUS ASCH protocol. The
communication baud rate is the default baud rate of that COMM
unless it has been changed by the SETEALUD command.

ch - PLC COMM port number (1-8)

Device!ll) - device |D of the MODEUS device (1 to 255)
address - Zerp-offset address of the holding register in the
MODEUS device.

Examples

relay [3] = READMODBUS (3, 5, 101}

Clomments:

The relay will contain the 16-bit data obtained from the MODBUY
device with ID = 0F and from register affset address 101 fin MODEUS
term this refer to the #0102 holding register) . Reading it into the
relavl [channel allows bit level manipulation by ladder logic, It can of
course alse he read inta any data memary. The command automatically
checks the response string received from the slave device for the
correct LREC and the slave address. The status of the operation can be
checked in the user program by executing the STATUS(Z) function,
whichk will return a ‘O if there is any ervor or if the slave device is
nat present,

See Also

WRITEMODBUS, STATUS({2), NETCMD$()

Ii Basic to TBASIC Reference Manual

|@ Daone

I_ l_ |E_EJ_I by Computer

=
£

7-14

Chapter 8: Ladder Logic Language Reference

|. Ladder Logic Fundamentals: Contacts, Coils, Timers and Counters

1. Contacts

Ladder logic programs mimic the electrical circuit diagrams used for
wiring control systems in the electrical industry. The basic purpose of an
electrical confrol system is to determine whether a load should be turned
ON or turned OFF, under what circumstances and when it should
happen. To understand a ladder program, just rememiber the concept
of current flow - a load is turned ON when the current can flow to it and is
turned OFF when the current could not flow 1o it.

The fundamental element of a ladder diagram is a "Contact". A contact
has only two states: open or closed. An open contact breaks the current
flow whereas a closed contact allows current to flow through it to the
next element. The simplest contact is an On/OFF switch, which requires
external force (e.g. the human hand) to activate if. Limit switches are
those small switches that are placed at certain location so that when a
mechanical device moves towards it, the contact will be closed and
when the device moves away from it, the contact will be open.

If a contact is connected 1o a load and the contact is closed, the load
will be turned ON. This simple concept can be illustrated by the most
basic ladder diagram as follow:

Switch Lamp
| (OUTY

The verical line on the left is the "Power" line; current must flow through
the "Switch" contact in order to turn ON the load "Lamp". (In fact, there
should be a second vertical line on the right end of the ladder diagram
to provide a return path for the current flow, but this is omitted to simplify
the circuit diagram). Now, if instead of wiring the switch to the lamp
directly as suggested in the above diagram, you could connect the
switch to the PLC's input and connect the lamp to the PLC's output, and
then write the above ladder program to perform the same job. Of
course it makes little sense to use a PLC if that is all you want to do. We
will see how a PLC can simplify wiring shortly.

Note: The contact "Switch" shown in the above diagram is
termed a Normally-open (N.O.) contact.

8-1

Now, let's say if there are 3 switches that must work together to control
the lamp. A Master switch must be ON, and one of the two control
switches "confrolsw1" and "controlsw2" must be ON while the other must
e OFF in order to tun ON the lamp (think of two-way switches in your
house and you will get the ideqa). We can wire all 3 switches to 3 inputs of
the PLC and the lamp to the output of the PLC. We can write the
following ladder program to perform this task:

b aster contral S contral Sz Lamp
e oun)

control S controlSWi2
|

A contact with a /" across its body is a Normally-Closed (N.C.) contact.
What it means is that the ladder program is using the ‘inverse" of the
logic state of the input to interpret the diagram.

Hence in the above ladder diagram, if "Master" and "controlSW1" are
turned ON but "controlSW2" is tumed OFF, the lamp will be turned ON
since the inverse logic state of an OFF state "controlSW2" is frue. Think of
an imaginary current flowing through the "Master" contact, then through
the "controlSW1" and finally through the normally-closed "controlSW2"
contact to turn ON the lamp.

On the other hand, if "controlSW1" is OFF but "controlSW2" is ON, the
Lamp is also turned ON because the current could flow via "Master" and
then through the lower parallel branch via N.C. "controlSW1" and the
N.O. "contfrolSW2".

Note: As you can see, although the switch "confrolSW1" is
connected to only 1 physical input to the PLC, but it appears twice
in the ladder diagram. If you actually try to connect physical wires
to implement the above circuits, both "controlSW1" and
"controlSW2" will have to be of multiple poles type. But if you use a
PLC, then these two switches only need to be of single-pole type
since there is only one physical connection, which is to the input
terminal of the PLC. But in the ladder diagram the same contact
may appear as many times as you wish as if it has unlimited
numiber of poles.

The above example may be simple but it illustrates the basic concept of
logical "AND” and “"OR” very clearly. "controlSW1" and "controlSW2" are
connected in series and both must be TRUE for the outcome to be TRUE.
Hence, this is a logical AND connection. On the other hand, either one of
the two parallel branches may be used to conduct current, hence this is
a logical OR connection.

8-2

Once you understand this fundamental principle of interpreting a ladder
diagram, everything should become clearer and simpler. Ladder
diagram programming can be used to create a rather sophisticated
control system. However, In TRILOGI we augment its power further by
allowing a ladder program to activate customized functions created in
TBASIC.

. Relay Coils

A contact can also be activated by the presence of an electrical
current. This makes it possible for a control system to control the turning
ON or OFF of a large load by using electrical current to activate a switch
that can conduct high current. The simplest form of this type of contact is
arelay.

In fraditional electromagnetic relay, a coil of wire is wound around an
iron core that furns it into an electrornagnet. When current passes
through the "coil' the magnet is "energized" and the force is used to
either close a contact (that makes it a normally-open contact, closed
only when energized) or open it (that will be a normally-closed confact
since it is closed when not energized).

Ladder Logic programming language borrows some of those terms used
to describe the electromagnetic relay for its own use. You connect a
relay coil to the right end of the ladder diagram just like an output, as
follow:

Start Stap Putive
¥ RL)
Auctive
|
11
Auctive Lamp
o | {OUT)

In a PLC, there are hundreds of internal "relays" which are supposed 1o
behave like the typical electromagnetic relay. Unlike an output (e.g. the
"Lamp" output) which has a physical connection out of the PLC, when an
internal relay is turned ON, it is said to be "energized" but you will not see
any changes in the PLC's physical I/Os. The logic state is kept internally in
the PLC. The contact of the relay can then be used in the ladder
diagram for turning ON or OFF of other relays or outputs. A relay contact
in the ladder diagram can be Normally-Open (NO) or Normally Closed
(NC) and there is no limit fo the number of contacts a relay can have.

8-3

3. Out Coils

A PLC output is redlly just an internal relay with a physical connection that
can supply electrical power to control an external load. Thus, like a relay,
an output can also have unlimited number of contacts that can e used
in the ladder program.

4. Timer Coils

A fimer is a special kind of relay that, when its coil is energized, must wait
for a fixed length of time before closing its contact. The waiting time is
dependent on the "Set Value" (SV) of the timer. Once the delay time is
up, the timer's N.O. contacts will be closed for as long as its coil remains
energized. When the coil is de-energized (i.e. turned OFF), all the timer's
N.O. contacts will be opened immediately.

However, if the coil is de-energized before the delay time is up, the timer
will be reset and its contact will never be closed. When a last aborted
timer is re-energized, the delay timing will restart afresh using the SV of
the timer and not continue from the last aborted timing operation.

5. Counter Coils

A counter is also a special kind of relay that has a programmable Set
Value (SV). When a counter coil is energized for the first time after a reset,
it will load the value of SV-1 info its count register. From there on, every
time the counter coil is energized fromm OFF to ON, the counter
decrements its count register value by 1. Nofe that the coil must go
through OFF to ON cycle in order to decrement the counter. If the coil
remains energized all the time, the counter will not decrement. Hence
counter is suitable for counting the number of cycles an operation has
gone through.

When the count register hits zero, all the counter's N.O. contacts will be
turned ON. These counter contacts will remain ON regardless of whether
the counter's coil is energized or not. To turn OFF these contfacts, you
have to reset the counter using a special counter reset function [RSctr].

8-4

ll. Special Bits

TRILOGI contains a number of special purpose [E51/0 Labels
bits that are useful for certain applications. These 4| speciar Bits | *
include 8 clock pulses ranging from periods of 4 | Label Neme
0.01 second to 1 minute, a "Normally-ON" flag e

and a "First Scan Pulse", efc. WigEELLY; (L]

lat. 3can
Ols Clock

a.
To use any of these bits, enter the ladder editor EISEE Eﬂgﬁ
and creatfe a "contact"; when the 1/O fable pops o
up, scroll the windows until a "Special Bits" menu
pops up. This menu is located after the "Counter
Table" and before the "Input’ table. as shown

below:

1z Clock
2z Clock

.53 Clock
l.0= Clock
1l min Clock
ETC Error -

| B

[T P

e

1. Clock pulse bits
The 8 clock pulses supported by TRILOGI are:

Clock Pulse Period [Ladder Symbol
' 0.01 second | Clk:.0Ts
' 0.02 second | Clk:.02s
' 0.05 second | Clk:.05s
' 0.1 second | Clk:0.1s
' 0.2 second | Clk:0.2s
' 0.5 second | Clk:0.5s
' 1.0 second | Clk:1.0s
- 1 minute | Clk:1min

A clock pulse bit is ON for the first half of the rated period, then OFF for
the second half. Duty cycles for these clock pulse bits are therefore
50%, as follow:

Clk:0.1s (0.1 second Clock Pulse)

The clock pulse bits are often used with counter instructions 1o create
timers. Additionally, they can be used as timing source for "Flasher"
circuit. A reversible counter can also work with a clock pulse bit to

8-5

create secondary clock pulses of periods that are multiples of the basic
clock pulse rate.,

2. SegN:X

These are special "Sequencer"' contacts which are activated only when
the step counter of a Sequencer N reaches step #X. E.g. a Normally
Open contact Seqg2:6 is closed only when Sequencer #2 reaches Step
#6. At any other step, this contact is opened.

Normally ON Flag - Norm.ON

You can make use of this flag if you need to keep something
permanently ON regardless of any input conditions. This is because
with the exception of Interlock Off function [ILoff], a coil or a
special function is not allowed to connect directly 1o the power line
(the vertical line on the left end of the ladder diagram). If you need to
permanently enable a coil, consider using the "Normally-ON" bit from
the "Special Bits" menu, as follow:

| Morm.on | Light

| | —= [oLT)

First Scan Pulse - 1st.Scan

This special bit will only be tumed ON in the very first scan time of the
ladder program. After that it will be permanently tumed OFF. This is
useful if you need to initialize certain conditions at the beginning. When
the program is fransferred to the PLC, this bit will only be ON when the
PLC is first powered up or after it has been reset.

Real Time Clock Error - RTC.Err

This bit is turned ON if the M-series PLC does not have battery-backed
MX-RTC option and the clock has been reset due to power failure or
watchdog timer reset. This gives warning to applications that require a
correct real world time (such as scheduled ON/OFF operation) that the
clock data is incorrect, hence enabling corrective action to be taken.

8-6

lll. Special Functions

During ladder circuit editing, when you click on the [—Frilslor [~Frldicon to
create a special function coil, a special function menu will pop up as
shown below:

Selectafuncton K|
1. [DHCtr] - Decrement Rew. Counter
2. [R2Ctr] - Reset Counter

3. [UpCtr] - Increment PRew. Counter
4. [AFseqg] - Advance Secquencer
E_[RE=sey] - Beset Sequencer

& [BteplN] - Set Sequencer to Step #N
7. [Latch] - Latching Belay/Output

2. [Clear] - Clear Latched Relay

9. [ILock] - Interlock EBegin

L [ILoff] - Interlock End

E. [dDIFU] - Differentiate Up

C. [dDIFD] - Differentiate Dowmn

. [CusFn] - Custom Function

E. [dCusF] - Diff. Up Custom Funcs

F. [MaBS3T] - Master EReset

1. Reversible Counter Functions: [DNctr], [Upctr] and [RSctr]

The [DNctr], [UPctr] and [RSctr] functions work together to implement
reversible counter functions on any of the 128 counters supported by
TRILOGI.

The ordinary down counter (creafed by clicking on the icon)
essentially decrements the counter value by 1 from the "Set Value" (SV)
and will stop when its count becomes zero. Unlike the ordinary down
counter, a reversible countfer is a circular counter that changes the
counter present value (PV) between 0 and the SV. When you try to
increment the counter past the "Set Value', it will overflow to become
'0". Likewise if you try to decrement the counter beyond 'O, it will
underflow to become the "Set Value".

All three counter functions [DNctr], [UPctr] and [RSctr] can operate on
the same counter (i.e. assigned to the same counter label) on different
circuits. Although these circuits may e located anywhere within the
ladder program, it is recommended that the two or three functions
which operafe on the same counter be grouped together in the
following order: DNctr], [Upctr] and [RSctr]. Note that NOT all three
functions need 1o be used to implement the reversible counter,

8-7

Decrement Counter [DNctr]

Execution condition M
of [DMetr] function OFE | | | | | | | | | |

oW
=1

, oo0z2

Counter's Present SY-2
Walue(P) Q001
[a]ujuia]
OH

Counter's contact QFF

Each time when the execution condition of a [DNctr] function
changes from OFF to ON, the present value of the designated
counter is changed as follow:

a. If the counters present value (PV) is inactive, load the
counter register with the "Set Value" (SV, defined in the
Counter table) minus 1.

b. If the counter's present value (PV) is already ‘0, then load
the counter's PV with the SV defined in the counter table
and tumn on the counter's contact (also known as the
completion flag).

c. Otherwise, decrement the counter PV reqgister by 1.

Increment Counter [Upctr]

Execution condition O
of [Upcte] function QEE | | | | | | | | | |

=i

541 000z

Counter's Present o,
Walue(Pya Q001
0000

(n]3]
Counter's contact QEE

Each time when the execution condition of an [Upctr] function
changes from OFF to ON, the present value of the designated
counter is affected as follow:

a. If the counter is inactive, load the counter register with the
number '000T".

8-8

b. If the counter's present value (PV) is equal to the Set Value
(SV, defined in the Counter table), load the counter reqister
with numiber '0000" and turmn on the counter's contact (also
known as the compiletion flag).

c. Ofherwise, increment the counter PV reqister by 1.

Reset Counter [RSctr]

When the execution condition of this function changes from OFF
to ON, the counter will reset to inactive state. This function is
used to reset both a reversible counter and an ordinary down-
counter coil.

2. Sequencer Functions: [AVseq], [RSseq] and [StepN]

Please refer to the later section in the chapter on “Using TRILOGI
Sequencers”

3. Latch Relay Function [Latch]

Latching relay is convenient for keeping the stafus of an execution
condition even if the condition is subsegquently removed. The program
elements that are assigned as Latching Relays will remain ON once
they are energized. Only Relays and Outputs may be assigned as
Latching Relays.

On selecting [Latch] function, you can use the left/fright cursor keys or
click on the left/ight arrow keys to move between the Relay and
Output tables. The selected relay or oufput will now be assigned as a
Latching Relay. You will be able to see the label name of the program
element above the [Lafch] symbol in the ladder diagram.

Although latch-relay can be used in place of self-latching (Seal)
circuits, a latch-relay in an interlock section will not be cleared when
the interlock occurs. Only a self-latching circuit as shown in the
following will be cleared in an interlock section:

Start Sltﬂf' CR1
} { | (R LYY
CR

4. Clear Relay Function [Clear]

To de-energize a program element that has been latched by the
[Latch] function, it is necessary to use [Clear] function. On selecting
[Clear], choose the oufput or relay to be de-energized. When the
execution condition for that circuit is ON, the designated output or

8-9

relay will be reset. In the ladder diagram, the program element label
name will be shown above the [Clear] symbol.

If the execution condition for [Latch] and [Clear] functions are both ON
at the same fime, then the effect of the designated bit depends on
the relatfive locations of these two functions. Remember that an
output or relay bit energized by [Latch] will remain ON until it is turned
OFF by [Clear]. It is recommended that [Clear] circuit be placed just
after the [Latch] circuit for the same output or relay controlled by these
two functions. This ensures that [Clear] function has higher priority over
[Latch] function, which is normally so in hardware latch-relay or other
industrial PLCs.

5. Interlock [ILock]

The "Interlock" [ILock] and "Interlock Off" [ILoff] functions work together
to confrol an entire section of ladder circuits. If the execution
condition of a [ILock] function is ON, the program will be executed as
normal. If the execution condition of [ILock] is OFF, the program
elements between the [ILock] and [ILoff] will behave as follow:

All output coils are turned OFF,

All timers are reset to inactive.

All counters retain their present values.

Latched relays by [Latch] function are not affected.
[dDIFU] and [dDIFD] functions are not executed.

All other functions are not executed.

~®Q00TQ

An Interlock section is equivalent to a master control relay controlling a
number of sub-branches as follow:

Maslter
I
— (e Master LS CR
TTET T T T TTTTTTTTTRRL T Y — | || {RLY]
A . LE2 10min
_|"‘f| '-.RLYJ TIM)
L=2 10min averhe
— | {TIMY nterlock
Dverhe+ Section A Outt
— ——oum
S it
— | {OUT)
[ILof]
Using Interlock Functions | Equivalent Circuit

Note that [ILoff] is the only function that does not need to be
energized by other program elements. When you use one or more
[ILock] functions, there must be at least one [ILoff] function before the

8-10

6.

end of the program. Otherwise the compiler will warn you for the
missing [ILoff]. The logic simulator always clears the Interlock at the
end of the scan if you omit the [ILoff] function.

You can program a second or third level Interlock within an Interlock
section using a few [lLock] functfions. However, you only need to
program one [ILoff] function for the outermost Interlock section, i.e.
[ILoff] need not be a matching pair for an [ILock] function.

Differentiate Up and Down [d DIFU] and [d DIFD]

When the execution condition for [dDIFU] goes from OFF to ON, the
designated output or relay will be tumned ON for one scan fime only.
After that it will be turned OFF. This means that the function generates a
single pulse for one scan time in response to the rising-edge of its
execution condition. When its execution condition goes from ON to
OFF nothing happens to the output or relay that it controls.

On the other hand, when the execution condition for [dDIFD] goes
frommn ON to OFF, the designated output or relay will be turned ON for
one scan time only. After that it will be turned OFF. This means that the
function generates a single pulse for one scan time in response to the
trailing edge of its execution condition. When its execution condition
goes from ON to OFF, nothing happens to the output or relay that it
controls.

Becution oy |
Condition

OFF

.
= =

[DIFU]function o

output oFF '

[DIFD] function g,
output oef

I
.

1 scan time

7. Custom Functions: [CusFn] and [dCusF]

These two functions allow you to connect a user-defined custom
function (CusFn) to the ladder logic as if it is a relay coil. Custom
functions are created using the integrated text editor provided by
TRILOGI Version 5.x.

8. Master Reset

An ON condition to this function clears all mailbox inputs, outputs,
relays, timers and counter bits to OFF, resets all timers
counters/sequencers to inactive state, and clears all latched relay bits.
All integer variables will be cleared fo zeros and all string variables will
e assigned o empty string.

IV. Using TRILOGI Sequencers

A sequencer is a highly convenient feature for programming machines or
processes that operate in fixed sequences. These machines operate in
fixed, clearly distinguishable step-by-step order, starting from an initial step
and progressing to the final step and then restart from the inifial step
again. At any moment, there must be a "step counter' to keep track of
the current step number. Every step of the sequence must be accessible
and can be used fo frigger some action, such as turning on a motor or
solenoid valve, etfc.

As an example, a simple Pick-and-Place machine that can pick up a
component from point 'A' to point 'B' may operate as follow:

Acftion
| Wait for "Start" signall

XL
()
©
$

| Forward arm at point A
| Close gripper
| Retract arm af point A

| Move arm fo point B

| Forward arm at point B

| Open gripper
| Retract arm atf point B

0N OO BN~ O

| Move arm to point A

TRILOGI Version 5 supports eight sequencers of 32 steps each. Each
sequencer uses one of the first eight counters (Counter #1 to Counter #8)
as its step counter. Any one or all of the first eight counters can be used
as sequencers "Seqgl1" to "Seq8".

To use a sequencer, first define the sequencer name in the Counter table
by pressing the <F2> key and scroll to the Counter Table. Any counter to
be used as sequencer can only assume label names "Seql" to "Seq8"
corresponding to the counter numbers. For e.g. if Sequencer #5 is 1o be

8-12

used, Counter #5 must be defined as "Seqgb". Next, enter the last step
number for the program sequence in the "Value" column of the table.

Construct a circuit that uses the special function "Advance Sequencer"
[AVSeq]. The first fime the execution condition for the [AVseq] function
goes from OFF to ON, the designated sequencer will go from inactive to
step 1. Subsequent change of the sequencer's execution condition from
OFF to ON will advance (increment) the sequencer by one step. This
operation is actually identical to the [UPctr] instruction.

The upper limit of the step counter is determined by the "Set Value" (SV)
defined in the Counter table. When the SV is reached, the next
advancement of sequencer will cause it 1o overflow to step 0. At this time,
the sequencer's contact will turn ON unfil the next increment of the
seqguencer. This contact can be used to indicate that a program has
completed one cycle and is ready for a new cycle.

Accessing individual steps of the sequencer is extremely simple when
programming with TRILOGI. Simply create a "contact" (NC or NO) in ladder
edit mode. When the /O window pops up for you to pick a label, scroll 1o
the "Special Bits" table as follow:

[E31/0 Labels The "Special Bits" table is located after the
1 1] 1 1l

4[speciar Bits| * Counters" table and before the "Inputs" table.

Labhel Name] . .
TEqNi — Then click on the "SegN:x" item to insert a
g e sequencer bit. You will be prompted to select a
0.0ls Clock sequencer from a pop-up menu. Choose the
BEl 0-02= Clock . .
0.05s Clack desired sequencer (1 to 8) and another dialog
| 0.22 Clock box will open up for you fo enter the specific
AR step number for this sequencer.
1 min Clock
RTC Error -
1| | B

Each step of the sequencer can be programmed as a contact on the
ladder diagram as "SegN:X" where N = Sequencers # 1 10 8. X = Steps #
0-31.

e.g. Seq2:4 = Step #4 of Sequencer 2.
Seqb:25 = Step #25 of Sequencer 5.

Although a sequencer may go beyond Step 31 if you define a larger SV
for it, only the first 32 steps can be used as contacts to the ladder logic.
Hence it is necessary to limit the maximum step number to not more than
31.

8-13

1. Special Sequencer Functions

Quite a few of the ladder logic special functions are related to the use
of the sequencer. These are described below:

Advance Sequencer - [AVsed]

Increment the sequencer's step counter by one until it overflows. This
function is the identical to (and hence interchangeable with) the
[UpCHr] function.

Resetting Sequencer - [RSseq]

The sequencer can also be reset to become inactive by the [RSseq]
function at any fime. Note that a sequencer that is inactive is not the
same as sequencer at Step 0, as the former does not activate the
SegN:0 contact. To set the sequencer to step 0, use the [StepN]
function described next.

Setting Sequencer to Step N - [StepN]

In certain applications it may be more convenient to be able to set
the sequencer to a known step asynchronously. This function will set the
selected sequencer to step #N, regardless of its current step number
or logic state. The ability to jump steps is a very powerful feature of the
sequencers.

Reversing a Sequencer

Although not available as a unique special function, a Sequencer may
be stepped backward (by decrementing its step-counter) using the
[DNctr] command on the counter that has lbeen defined as a
sequencer. This is useful for creating a reversible sequencer or for
replacing a reversible "drum" controller.

2. Other Applications

a. Driving Stepper Motor

A sequencer may be used to drive a stepper motor directly. A two-
phase stepper motor can be driven by four transistor outputs of the
confroller directly (for small motors with phase current < 0.5A) or via
solid-state relays. The stepper motfor can be driven using a
seqguencer that cycles through Step#0 to Step#3 (full-step mode) or
Step#0 through Step#7 (half-step mode). Each step of the
sequencer is used to energize different phases of the stepper
motor. A clock source is needed fo drive the stepper motor through

8-14

its stepping sequence. The stepping rate is determined by the
frequency (which is equal to 1/period) of the clock source.

Clock pulses with periods in multiples of 0.01 second can be
generated easily using the "Clk:.01s" bit and an [Upctr] function. For
e.qg., to generate a clock source of period = 0.05s, use "Ck.01s" to
feed to an [Upctr] counter with Set Value = 4. The counter's contact
(completion flag) will be turned ON once every 5 counts (0,1,2,3.4),
which is equivalent to a 0.05 sec. clock source.

b. Replacing a Drum Controller

A drum controller can be replaced easily by a sequencer if the
timing of the drum's outputs can be divided into discrete steps.
Assuming a drum confrols two outputs with the fiming diagram
shown in the following figure:

o

N BN N O O BRI
L o
| BEERENS

This can be replaced by an 8-step sequencer. Step 1 (e.g "Seql:1")
turns ON and latch Output A using [Latch] function, Step 2 turns ON
and latch Output B, Step 4 turns OFF Output A using the [Clear]
function, and Step 6 tumns OFF Outfput B. All other steps (3.5,7,0)
have no connection.

3. Program Example

Assume that we wish to create a running light pattern which turns on
the LED of Outputs 1 to 4 one at a time every second in the following
order: LEDT, LED2, LED3, LED4, LED4, LED3, LED2, LEDT, all LED OFF
and then restart the cycle again. This can be easily accomplished
with the program shown in Figure 6.9.

8-15

Cllk1|.Els Send

. [Avseq]
Sene: LED1
|| (OUT)
Sleqi?:ﬂ

L

SR LEDZ2
|| (OUT)
Sleqi?:?

L

SegE 3 LEDS
|| (OUT)
Sleqi?:ﬁ

L

Seged LED4
| (OUT)
Sleqi?:ﬁ

L

Stop Se
| [Raseq]

Figure 6.9

The 1.0s clock pulse bit will advance (increment) Sequencer #2 by one
step every second. Sequencer 2 should be defined with Set Value = 8.
Each step of the sequencer is used as a normally open contact to turn on
the desired LED for the step. A "Stop" input resets the sequencer
asynchronously. When the sequencer counts to eight, it will become Step
0. Since none of the LED is turned ON by Step O, all LEDs will be OFF.

8-16

Chapter 9: Introduction to TBASIC Custom Functions

Overview

TRILOGI Version 5 supports user-created special functions, known as Custom
Functions (the symbol CusFn will be used throughout this manual to mean
Custom Functions). Up to 256 CusFns can be programmed using a special
language: TBASIC.

TBASIC is derived from the popular BASIC computer language widely used
by microcomputer programmers. Some enhancements as well as
simplifications have been made to the language to make it more suitable
for use in PLC applications.

There are three simple ways to create a new CusFn:

1. From the "Edit" pull-down menu, select the item "Edit Custom Function"
and select the function number from a pop-up CuskFn selection table
that may range from 1 to 256. You may also use the hotkey <F7> to
open up the selection table. The selection table allows you to define
unigue and easily identifiable names for each custom function. Once
you have selected the custom function the editor window will open up
with the contents of that particular custom function.

2. If you have already created a ladder circuit which connects to either a
[CusFn] or [dCusF] function (both appear as menu-items within the
"Special Function" pop-up menu), then you can easily open up that
particular Cuskn by clicking the right mouse button while the highlight
bar is at the [CusFn] or [dCusFn].

[I. Custom Function Editor

The custom function editor window allows creation of any number of
lines of TBASIC program statements. Since this is a standard text editor,
you should have no problem using the key and mouse controls o edit
the fext. Pressing <F1> at the text editor window opens up a Help
screen that will show you the common keys and mouse actions. E.g. To
copy a paragraph of text, select it using the mouse and the press <Ctrl-
C>. Move the text editing cursor to the destfination and press <Ctrl-V>
to paste it to the new location.

9-1

Custom Function Execution

It is important to understand when and how a TBASIC-based Custom
Function is executed with respect to the rest of the program. There are

basically two ways in which a CusFn will be executed:

1. Triggered by Ladder Logic Special function coil

[CusFn]

A custom function may work the same way as any other special
functions in the TRILOGI ladder diagram programming environment.
When you are in ladder circuit editing mode, press <Ins> key to open
the "Ins Element" menu.

Select the item 91 —FUNC] o 0 —FUNC] to create a special

function output. A pop-up "Select a Function" menu will appear.

TBASIC suppart the block =
Each IF must he matched by

Compare
4}

Campatizon operatars are
== iz the NOT-EQUAL ope
These aperators anly war
uze the STRCMP fuchtion |

HOTEQUAL

1|

D Ol W om MmN

. Select a Function

. [DHNCtr] - Decrement BRev. Counter
. [RECLr] Beszet Counter

. [MpCtr] Increment Rew. Counter
. [AV=sedq] Advance Secquencer

. [RE=seq] Reszet Sequencer

. [Btepl] Set Beoquencer to Btep #N
. [Latch] Latching Relay/0utput
. [Clear] Clear Latched Belay

. [ILock] Interlock Begin
_[ILoff] Interlock End

. [ADIFTT] Differentiate Up

. [ADIFL] LDifferentiate Dowmn

. [Cu=sFn] Custom Function

. [dCu=F] Diff. Up Custom Funcs
. [MaR3T] Maszter BReset

1]

Select either item:

"D : [CusFn] - Custom created Function" or
"E . [dCusF] - Diff. Up Custom Functn"

to create a CusFn. You will be required 1o enter the selected custom
function number from 1 to 256. Note that CuskFn created using

" E .Diff. Up Custom Functn [dCusF]"

is a "Differentiated Up" instruction. This means that the function will be
executed only once every time when its execution condition goes from
OFF to ON. Nothing will happen when its execution condition goes from

ON to OFF.

On the other hand, using "D: Custom created Function [CusFn]" will
mean that the Cuskn will be executed every scan as long as ifs
execution condition is ON. This is offen not desirable and the cail
created using this menu item will be highlighted in RED color to serve as
an alarm to programmer. You will probably find that you will use the
differentiated version [dCusF] far more frequently.

. Periodic Execution of a Custom Function

There are many situations when you need the PLC to periodically
monitor an event or perform an operation. For example, 1o monitor the
temperature reading from a probe or check the real time clock for the
scheduled time, and to confinuously display changing variables on the
LCD display. It is not efficient to use the continuous [CusFn] function for
such purposes. It is far better to use the built-in clock pulses to trigger a
differentiated Custom function [dCusF]. You can choose a suitable
period from 0.01s, 0.02s, 0.05s, 0.1s, 0.2s, 0.5s, 1.0s and 1 minute for
the application. Other periods can also be constructed with a self-reset
timer. The custom function will only be executed once every period
controlled by the system clock pulse or the timer, as follow:

‘ Run Clk:04s Fr_#&:2
[2 fdusF)

For example, you dont need to update the value of a variable
displayed on the LCD screen any faster than the human eye can read
them. So using a 0.5s clock pulse may be sufficient and this will not
take up too much CPU time for the display. For slow processes such as
heating, a 1.0s clock pulse to monitor tfemperature change is more
than sufficient,

IMPORTANT

i. When the CPU scans the ladder logic to a circuit which contains a
CuskFn, and the execution condition of the circuit is TRUE, the
corresponding CusFn will be immediately executed. This means that
the CPU will not execute the remaining ladder circuits unfil it has
completed execution of the current CuskFn. Hence if the CusFn modifies
a certain 1/O or variable, it is possible to affect the running of the
remaining ladder program.

i. Note that the INPUT[n] variables contain data obtained at the
beginning of the ladder logic scan and not the actual state of the
physical input at the time of the CusFn execution. Thus, it will be futile
fo wait for the INPUT[n] variable to change inside a CusFn unless you
execute the REFRESH statement to refresh the physical 1/O before you
examine the INPUT[N] variable again.

9-3

jii. Likewise, any changes to the OUTPUT[N] variable using the SETBIT or
CLRBIT statement will not be fransferred to the physical outputs until the
end of the current ladder logic scan. Hence do not wait for an event
to happen immediately after executing a SETBIT or CLRBIT statement
on an OUTPUT[N] because nothing will happen to the physical output
until the current ladder logic scan is completed.

iv. If you want to force the output to change immediately you will need
to execute the REFRESH statement. Consideration must be given to
how such an act may affect the other parts of the ladder program
since not the entire ladder program has been executed.

V. Like all ladder circuits, the relative position of the circuit that triggers
the CusFn may affect the way the program works. [t is important to
consider this fact carefully when wiiting your ladder program and
TBASIC CusFns. Always remember that the CPU executes the ladder
logic and CusFn sequentially, even though the equivalent circuits in
hard-wired relay may seem to suggest that the different rungs of
ladder circuits were to work simultaneously.

vi. In line with the typical Ladder Logic programming rules, a CusFn may
appear only once within the ladder diagram, regardless of whether it
appears in the normal or differentiated form. A compilation error will
occur if a CusFn appears in more than one circuit,

vii. However, a CusFn may be "CALLed" as a subroutine by any other
CusFn and there is no restriction placed on the number of
repeated CALL of a CusFn by more than one CusFn. A CusFn
may also modify the logic states of an I/O element or the value
of internal timers and counters using its powerful TBASIC
commands (such as SetBit, ClrBit). The compiler however will not
alarm the user that a CusFn may inadvertently alter the logic
state of an I/O already controlled by some other ladder circuit.

This power and flexibility offered by the TBASIC-based custom functions
must therefore be handled with greater care by the programmer. It is
important to prevent conflicting output conditions due to an I/O being
controlled or modified at more than one place within a logic scan. The
net result is that the logic state of the /O appears to be in different
states at different parts of the ladder circuit. This could lead to bizarre
outcomes that may be difficult to frace and debug.

9-4

3.

Interrupt Service CusFn

A CusFn may also serve as an 'Inferrupt Service Routine" which is
executed asynchronously from the normal ladder logic execution. An
interrupt-driven CusFn is run when the condition that causes the interrupt
occurs. The response fime 1o execution is very short compared 1o the
scan time of the ladder program. There are several interrupt sources
that can trigger a CusFn:

a) Special Interrupt inputs

An M-series PLC contains some special "Interrupt" inputs which, when
enabled by the INTRDEF statement, will frigger a particular Cuskn
defined in the INTRDEF statement when the logic level at the interrupt
pin changes state (either from OFF to ON or from ON to OFF).

b) High Speed Counters (HSC) Reach Target Count

An M-series PLC contains some "High Speed Counter" inputs which,
when enabled by the HSCDEF statement, will frigger a particular
CusFn defined in the HSCDEF statement when the counter reaches a
preset target count value. This enables the CPU to cary out
immediate action such as stopping a motor or performing some
computation.

IV. Simulation & Examination of TBASIC Variables

1.

Egﬁ Programmable Logic Simulator Fn #10 Executed

Simulation Run of CusFn.

TRILOGI fully supports simulation of all TBASIC commands. After you
have completed coding a CusFn, test the effect of the function by
connecting it fo an unused input. Run the simulator by pressing <F9>
or <Cftrl-F9> key. Execute the CusFn by turning ON its control input. If
your CusFn executes a command that affects the logic state of any
I/O, the effect can be viewed on the simulator screen immediately.

ADC1-8 | | | | | | | | Wiy |Select| Cantral [+
Input Titner Courter Relay output Reset
start 3-949 Duration |«|Fl18 |Seql HERUN | oL ﬂ
Emer=stop | 20 timZ E 291 |CountOol = B out 2
FudPew = tim3 B34 CountcOl = |3 [
4 -E Countl = N ot 4
[] B Court lm] |5 [=iEies
B 5 [Bl s
v [| | I a7
& 5 = Bl o5
[~ | [~ | [| 800 Light
M0 oy [N [0
M1 [FEm fm
[12] [12] iz =
_|LI- _|LI- _|LI- _|LI- hd
JKIE | of 2 | of al Al

However, if the computation affects only the variables, than you may
need to examine the internal variables.

An 1/O or internal relay bit that has been tumned ON is indicated by a
RED color rectangular lamp, which simulates a LED being turned ON.
You can pause the logic simulator at any time by pressing the <Citrl-P>
key or clicking on the [Pause] button. Likewise the simulator engine can
e reset by clicking on the [Reset] butffon.

2. Simulation of ADC Inputs

Along the top edge of the Programmable Logic Simulator screen, you
will find 8 text fields adjacent to the label "ADC1-8". The programmer
can enter the expected ADC values for ADC#1 1o #8 in these text
fields. In effect, these simulate the potential signal strength at their
respective ADC input pins. These values will be captured by the TBASIC
program when an ADC(n) command is executed in a custom function
for ADC #n.

Note: values entered at the ADC input text field_will only be updated
when the user press the <Enter> key or the <TAB> key to ensure that
only finalized entries are used by the TBASIC program. (Otherwise,
imagine if you try to enter the value 123 at ADC #1, the program would
first be receiving "1", then "12" and then "123" which was not the
intention).

3. Viewing TBASIC Variables

The values of the internal variables as a result of the simulation run can
be viewed by pressing the <V> (which stand for "View") key or by
clicking on the [View] button while in the simulation screen. A pop-up
window will appear with the values of all the variables as well as special
peripheral devices supported by TBASIC. The variables are organized
into 4 screens. You can move from screen to screen using the left/right
cursor keys or by clicking on the navigation buttons:

Integer variables Screen

The first screen comprises all 26 32-bit integer variables A-Z, the system
DATE and TIME, ADC, DAC, PWM and the resulting values of setLED and
settlCD commands. The initial DATE and TIME figures shown during
simulation are taken from the PC's internal real-time clock values.
However, subsequent values can be affected by the values assigned
to the variable DATE[n] and TIME[N].

The present values of the first 3 high-speed counters: HSC1 to HSC3 are
also shown on this page. Note that ADC data for any particular A/D
channel #n wil only be shown if an ADC(n) function has been

9-6

executed. Otherwise the ADC value shown on screen will not reflect the
true current value of the ADC port.

E%’,g"lﬂ'iew Yanables - Integers !EE
A=0 E=0 c=0 D=0 E=0
F=0 =0 H=0 I=0 I=0
E=0 L=0 M=0 H=0 o=0
F=0 n=0 E=0 3=0 T=0
=0 =0 =0 H=0 T=0
2=0 H5C1l=10 HSCz= 10 HSC3=10
CH# 1 £ & L] 5 = 7 =]

ADC 1-2 |0 1] 1] 1]]]]]

2-1&|0 1] 1] 1]]]]]
DAC 1-2 |0 1] 1] 1]]]]]

2-1&|0 1] 1] 1]]]]]
MM 1-2 |0 1] 1] 1]]]]]
Date: ZOOLSL1FEY 4 lines LCI Display
Time: 15:13:3
Lay : Sat

LED'=
Hex | Edi Close 4 » |

Data Memory Screen
The second screen displays, in 25 pages, the values of the 16-bit DM
variables froom DM[1] to DM[4000]. Each page displays 16 rows x 10
columns = 160 DM variables. You can scroll up and down the pages
by clicking on the [PgUp] or [PgDn] buffons or using the corresponding
keys on the keyboard.

String Variable Screen

The third screen displays the value of the 26 string variables AS to Z$ in 4
pages, depending on the length of each string. If the execution
condition is ON and the CusFn is not of the differentiated type, then the
CusFn will be continuously executed. The result of the variable will be
continuously updated on the viewing window.

System Variable Screen

System variables such as INPUT[N] , RELAY[n] and emINT[n] are visible in
this screen. You may wish to click on the [Hex] button to view the values
in hexadecimal notation as this is more commonly used by
programmers to identify the bit pafterns in these variables.

4. Changing The Contents of Variables
While the "View Special Variables" window is open, you may change the
contents of the following variables by clicking on the [Edit] button:

AZ, AS 1o Z$, DM[n], DATE[n], TIME[n], INPUT[n], OUTPUT[n], RELAY[n],
TIMERBIT[n], CTRBIT[N], TIMERPV[n], CTRPV[n] and HSCPV[n], emiINT[n],
emLINT[n].

9-7

A text entry window will pop up and you will have to enter the values in
the form of assignment statements, such as:

e.g. A = 5000;
DM[99]=5678;
OUTPUT[2]=&HO1AB

BS = "Welcome to TBASIC"

The variable will fake up the new value as soon as it is entered, and if
the execution condition for any CusFn is ON, the simulator will process
the newly entered data immediately and produce the new outcomes.
This gives you greater flexibility in controlling the simulation process.

5. Decimal and Hexadecimal Representation

All the numeric data shown in the "Special Variables" window are by
default displayed in decimal notation. You can display the number in
hexadecimal format by clicking on the [Hex] buttfon or by pressing the
<H> key. Press the <D> key if you wish to switch back to the decimal
format. This feature is very useful for programmers who are familiar with
hexadecimal representation of a binary number. The [Hex] button will
become the [Dec] button when you enter the Hex display mode.

V. On-Line Monitoring of TBASIC Variables

If you execute the "On-Line Monitoring/Control' command from the
"Controller" pull-down menu, TRILOGI Version 5 will continuously query the
PLC for the values of all their internal variables. These variables’ values will
be updated in real time in the "View Special Variables" window. You may
also alter the value of any variables in the PLC using the "Edit Variable"
window (by clicking on the "Edit" button af the "View xxx Variables" window.

This ability of TRILOGI to provide instant and full visibility of all the PLC's
internal variables greatly facilitates the programmers’ delbbugging process.
The ease of programming offered by the TRILOGI programming
environment is really what really sets the M-series PLCs far ahead of many
other PLCs where both programming and debugging are redlly
painstaking tasks. (This is assuming they have been fully equipped with all
the expensive "options" to match the M-series built-in capability!)

1. PAUSE and RESET of Target PLC

During On-Line Monitoring, if the "View Special Variables" window is
opened, you can still reset the PLC's internal data by pressing the <Cirl-
R> key. Pressing the <P> key can halt the PLC. A halted PLC can

9-8

subsequently be released from the halted mode by pressing the <P>
key again.

. Using LCD Display for Debugging

You should take advantage of the built-in LCD display port of the
T100MD to display internal data at the location where you want to frack
their values, especially if the value changes rapidly which may not be
constantly captured by on-line monitoring screen.

VL.

Error Handling

Since the CusFn text editor does not restrict the type of text that may be
entered into its editor, the TRILOGI compiler will have to check the syntax
of the users TBASIC program to look out for misspelling, missing
parameters, invalid commands, etc. Such errors, which can be fracked
down during compilation process, are known as "Syntax Errors".

1.

Syntax Error

TRILOGI employs a sophisticated yet extremely user-friendly syntax error
fracking system: When a syntax error is encountered, the compilation
will be aborted immediately and the CusFn, which contains the error, is
automatically opened in the text editor. The location of the offending
word is also highlighted and a pop-up message window reports to you
the cause of the error. You can then immediately fix the error and re-
compile until all the errors have been corrected.

Error Message Cause / Action

Only TBASIC commands and legal variable

Unaefined syrmbdol found names are allowed. See Chapter 3.

Serious trouble, please email 1o the
Compiler internal error manufacturer support@tri-plc.com to inform
us.

") " found without
matching " ("

Expect to see either an integer variable or

Integer expected integer constant.

Check the language reference for allowable

Value is out-of-range
range of values for the command.

Duplicate line label Label for GOTO must be unique within the
number same CusFn.

Undefined GOTO Put a matching label at the place where the
destination: GQOTO statement is supposed to go.

9-9

| Invalid GOTO Iabel

| @# must be in the range 0-255

Type mismatch (numeric
and string types may not
Mix)

In an expression, strings and infegers may not
be mixed unless converted using the
conversion function. e.g. STRS, VAL, etc.

| String is oo long

A string is limited to 70 characters

Too many line labels

There should not be more than 20 GOTO
labels within the same CusFn.

Unknown Keyword

Most likely wrong spelling for TBASIC statement
or function.

WHILE without ENDWHILE

Every WHILE statement must be ended with @
matching ENDWHILE statement. Nested WHILE
loop must have proper matching ENDWHILE for
each WHILE.

IF without ENDIF

Every IF statement must be ended with @
matching ENDIF statement to define the
boundaries for the block controlled by the IF
statement. For multiple IF THEN statement,
each IF must be matfched by a corresponding
ENDIF.

FOR without NEXT

Every FOR statement must be ended with a
matching NEXT statement to define the
boundaries for the block controlled by the FOR
statement. For nested FOR loops, each FOR
must be matched by a corresponding NEXT.

| Expect keyword "TO"

Required by FOR statement,

| Must be an integer

String variable or constant not allowed.

Must be an integer
variable only

Integer constant not allowed.

Must be an integer
constant only

Integer variable not allowed.

Must be a string

Integer constant or variable not allowed.

Must be a string variable
only

String constant not allowed.

Must be a string constant
only

String variable not allowed.

Incomplete Expression

Expression not ended properly.

String constant missing
closing *

String constants must be enclosed between a
pair of opening and closing quotation
character (")

Must be Integer A to Z only

index for FOR..NEXT loop must be A-Z.

9-10

2. Run-Time Errors

Certain errors only become apparent during the execution of the
program, e.g. A = B/C. This expression is perfectly OK except when C =
0, then you would have aftempted to divide a number by zero, which
does not yield any meaningful result. In this case a "run-time error" is
said to have occurred. Since run-time errors cannot be identified during
compilation, TRILOGI also checks the validity of a command during
simulation run and if a run-time eror is encountered, a pPopP-up
message window will report to the programmer the cause and the
CusFn where the run-time error took place. This helps the programmer
locate the cause of the run-time erors 10 enable debugging. The
possible run-time errors are listed in the following table and they are
generally self-explanatory.

Run-Time Error Message

Divide by zero

Call stack overflow! Circular CALL suspected!
FOR-NEXT loop with STEP = 0!

SET_BIT position out-of-range!

CLR_BIT position out-of-range!

TEST BIT position out-of-range!

STEPSPEED channel out-of-range!
llegal Pulse Rate for STEPMOVE!

llegal acceleration for STEPMOVE!

STEPSTOP channel out-of-range!

ADC channel out-of-range

DAC channel out-of-range

LED Digit # within (1-12) Only!
PWM Channel out-of-range!

LCD Line # must be (1-4) Only!
PM channel out-of-range!

System Variable Index Out-of-range!

Shifting of (A-Z) Out-of-rangel!
llegal Opcode - Please Inform Manufacturer!

|
|
|
|
|
|
|
|
|
|
| STEPMOVE channel out-of-rangel!
|
|
|
|
|
|
|
|
|
|
|

Timer or Counter # Out-of-Range!

Chapter 10: TBASIC Statements, Functions,
Operatorsand Variables

What are TBASIC Statement and Functions?

1. STATEMENT

A STATEMENT is a group of keywords used by TBASIC to perform certain
action. A statement may take 0,1,2 or more arguments. The following
are some TBASIC statements: PRINT, LET, IF, WHILE, SETLED ...etc.

. FUNCTION

A FUNCTION acts on its supplied arguments and return a value. The
returned value may be an integer or a string. A function can usually be
embedded within an expression as if it is a variable or a constant, since
its content will be evaluated before being used in the expression. E.g.

AS = '"Total is §"+STRS(B+C)

STRS$(n) is a function which retumns a string and therefore can be used
directly in the above string assignment statement.

The most distinguishable feature of a FUNCTION is that its arguments are
enclosed within parenthesis "(" and ")'. e.g. ABS(n), ADC(n), MIDS(AS,n,m),
STRCMP(AS,BS).

Note: Statements or functions and their arguments are NOT case-
sensitive. This means that commands such as PRINT and PriNt are
identical. However, for clarity seeks we use a mix of upper and lower
case characters in this manual.

. DELIMITER

A TBASIC program consists of many statements. Each statement usually
falls on a different line. The new line therefore acts as a "delimiter" which
separates one statement fromm another. Some statements such as
IF..THEN..ELSE..ENDIF span multiple statements and should e separated
by proper delimiters.

To make a program visually more compact, the colon symbol "
may be used to act as delimiter. E.Q.

10-1

IF A > BTHEN

C =D*5
ELSE

C =D/5
ENDIF

may be written more compactly as
IFA>B:C=D*5ELSE:C=D/5:ENDIF

[I. TBASIC Integer Constants, Variables & Operators

The TBASIC compiler in TRILOGI Version & supports full 32-bit infeger
computations. However, only variable A to Z are 32 bits in length which
allow them to represent number between -2°' to -23!, the remaining
system variables and data memory DM[n] are all 16-bit variables which
means that they can only store number between -32768 to +32767.
However, all numerical computations and comparisons in TBASIC are
caried out in 32-bit signed integer, regardless of the bit-length of the
variables involved in the numerical expression.

1. Integer Constants

These may be entered directly in decimal form, or in hexadecimal
form by prefixing the number with the symbol "&H". e.g.

12345678
&H3EF =1007 (deci mal)

If the result of an expression is outside the 32-bit limits, it will overflow
and change sign. Care must therefore be exercised to prevent
unexpected result from an integer-overflow condition.

A constant may be used in an assignment statement or in an
expression as follow:

A = 12345

| F A*30 + 2345/123 > 100
THEN END F

10-2

IMPORTANT (16-bit variables comparison)

When entering an integer constant using the hexadecimal prefix
"&H", it is important to note the sign of the intended value and
extend the signs to most significant bit of the 32 bit expression.
E.g. to represent a decimal number "-1234", the hexadecimal
representation must be "&HFFFFFB2E" and not "&HFB2E".

Assuming that a 16-bit variable DM[1] contains the number -1234
and a comparison statement is made to check if the number is -
1234. The 32-bit hexadecimal representation of constant -1234 is
&HFFFFFB2E. If you enter the constant as 16-bit representation
"&HFB2E" as follow:

IF DM[1] <> &HFB2E CALL 5

TBASIC franslates the numiber "&HFB2E" infto a 32-bit decimal
number 64302, which when compared to the number "-1234"
contained in DM[1] will yield a "False" result which is an error. The
following are the correct representation:

a) IF DM[1] <> -1234 CALL 5 : ENDIF
p) IF DM[1] <> &HFFFFFB2E'™ CALL 5: ENDIF

2. Integer Variables

Variables are memory locations used for storing data for later use. All
Integer variables used in TBASIC are GLOBAL variables - this means that
all these variables are shared and accessible fromm every custom
function.

TBASIC supports the following integer variables:

i. 26 Integer variables A, B, C....Z which are 32-bit variables. Note
that the variable name must be a single character.

i. A large, one-dimensional 16-bit integer array from DM[1] to
DM[4000], where DM stands for Data Memory. A DM s
addressed by its index enclosed between the two square
brackets "[" and "". e.g. DM[3], DM[A+B*5], where A and B are
integer variables.

ii. ~ System variables. These are special integer variables which
relates to the PLC hardware, as follow:

10-3

Inputs, Outputs, Relays, Timers and Counters Contacts

The bit addressable I/Os elements are organized into 16-bit integer
variables INPUT[n], OUTPUT[n], RELAY[n], TIMERBIT[n] and CTRBIT[n] so that
they may be easily accessed from within a CusFn. These 1/Os are
arranged as shown in the following diagram:

I/O numbers
48 33 32 17 16 1
Bit# 15 0 15 0 15 0
INPUT[3] INPUT[2] INPUT[1]
OUTPUTI3] OUTPUTI[2] OUTPUTI[1]
--------- RELAYI[3] RELAY[2] RELAY[1]
TIMERBIT[3] TIMERBIT[2] TIMERBIT[1]
CTRBIT[3] CTRBIT[2] CTRBIT[1]

Timers and Counters Present Values

The present values (PV) of the 128 timers and 128 counters in the PLC
can be accessed directly as system variables:

timerPV[1] to fimerPV[256], for timers' present value
ctrPV[1] to ctrPV[256], for counters' present value

DAIE and TIME Variables

The PLC's Real-Time-Clock (RTC) derived date and fime can be
accessed via variables DATE[1] to DATE[3] and TIME[1] to TIME[3],
respectively as shown in the following table:

Date Time
YEAR DATE[1] HOUR TIME[T]
MONTH DATE[2] MINUTES TIME[2]
DAY DATE[3] SECOND TIME[3]
Day of
Week DATE[4]

DATE[1] : may contain four
digits (e.g. 1998, 2003 etc).
DATE[4] : 1 for Monday, 2 for
Tuesday, 7 for Sunday.

10-4

High Speed Counters

The M-series PLC support High Speed Counters (HSC) that can be used
to capture high frequency incoming pulses from positional feedback
encoder. These high speed counters are accessible by CusFn using
the variables HSCPV[1] to HSCPV[8]. All HSCPV[n] are 32-bit integer
variables.

. Integer operators:

Operators" perform mathematical or logical operations on data.,
TBASIC supports the following intfeger operators:

i) Assignment Operator:

An integer variable (A to Z, DM and system variables, etc) may be
assigned a value using the assignment statfement:

A = 1000
X = H*I4+J + len(AS)

i) Arithmetic Operators:

Symbol |Operation Example
+ Addition A =B+C+25
- Subtraction Z = TIME[3]-10
* Multiplication | PRINT #1 X*Y
/ Division X = A/(100+B)
MOD Modulus Y=YMOD 10

iii) Bitwise Logical Operators: logical operations is perform bit-for-
bit between two 16-bit integer data.

Symbol |Operation Example
& logical AND IF input[1] & &HO2 ...
| logical OR output[1] = A | &HO8
~ Exclusive OR A = RELAY[2] " B
~ logical NOT A = ~timerPV[1]

iv) Relational Operators : Used exclusively for decision making
expression in statement such as IF expression THEN and
WHILE expression

10-5

Symbol |Operation Example
= Equal To IFA =100

<> Not Equal To WHILE CTR _PV[O]<> O
Greater Than IFB > C/(D+10)
Less Than IF TIME[3] < 59

.- TGoreo’rer Than or Equall WHILE X >= 10

<= Less Than or Equal To |IF DM[I] <= 5678

AND Relational AND IFA>BAND C<=D

OR Relational OR IF A<>0 ORB=1000

v) Functional Operators : TBASIC supports a number of built in functions
which operate on infeger parameters as shown below:

ABS(n), ADC(n), CHR$(n), HEX$(n), STR$(n)

. Hierarchy of Operators

The hierarchy of operators represents the priority of computation. E.g. X
= 3 + 40*(5 - 2). The compiler will generate codes to compute 5 - 2
first because the parentheses have the higher hierarchy. The result is
then multiplied by 40 because multiplication has a higher priority then
addition. Finally 3 will be added to the result. If two operators are of the
same hierarchy, then compiler will evaluate from left to right. e.g. X = 5
+ 4 - 3. 5+4 is first computed and then 3 will be subtracted. The
following table list the hierarchy of various operator used.

Hierarchy Symbol Descriptions
Highest |() Parentheses

*, /|, MOD Multiplication/Division

+, - Add/Subtract

- Negate

& |, ~,~ Logical AND,OR,XOR,NOT
Lowest |=,<>,>,>=,<,<= | Relational operators

10-6

String Variables and Constant

A string is a sequence of alphanumeric characters (8-bit ASCIl codes)
which collectively form an entity.

1. String Constants

A string constant may contain fromm O to 70 characters enclosed in
double quotation marks. e.g.

"TBASIC made PLC numeric processing a piece of cake!"
"$102,345.00"

2. String Variables

TBASIC supports a maximum of 26 string variables AS, BS ... ZS. Each
string variable may contain from 0 (null string) up to a maximum of 70
characters.

Note: For M-series PLC with firmware version 145 and above, you can

access the 26 sting variables using an index: $S[1] to $S[26].
l.e. AS is the same as $$[1], Z$ is the same as $5[26]. Note that
SS[1] to $$§[26] are not additional string variables, it just give you
a way fo index the string variables not possible on previous
firmware version. Also, only TRILOGI version 5.2 and above
properly support these variable names. Caution: Do not try to
transfer a program using $S[n] variable to a PLC with firmware
earlier than r45 as it can cause the PLC operating system to
crash.

3. String Operators

)

Assignment Operator: A string variable (A to Z, DM and system
variables, efc) may be assigned a sfring expression using the
assignment statfement:

AS = "Hello, Welcome To TBASIC"
Z$ = MIDS(AS,3,5)

Concatenation Operators: Two or more stings can be
concatenated (joined together) simply by using the "+" operator.

e.g.

MS = "Hello" + AS + ", welcome fo " + BS

If AS contains "James", and BS contains "TBASIC", MS will contain the
string: "Hello James, welcome to TBASIC.

10-7

i) Comparison Operator: Two strings may be compared for equality by
using the function STRCMP(A$,B$). However, the integer comparator
such as "=", "<>", etc cannot be used for string comparison.

iv) Functional Operators: TBASIC supports a number of statement and
functions which take one or more string arguments and return either
an infeger or a string value. e.g.

LEN(x$), MIDS(48,x,y), PRINT #1 A48,....
SETLCD 1, x$VAL(x$)

Please refer to the next chapter for detailed descriptions of these
operators.

Special Variables — EMINT, EMLINT & EMEVENT

The TT0OMD+ and T100MX+ PLCs are originally designed to be used with
a third-party server sofftware named “EMIT 3.0", made by emWare Inc. of
Salt Lake City, USA. However, we have decided to depart from the EMIT
platform for all future PLC design and we no longer support the later
version of EMIT server.

Anyway, there are some special variables set aside for data exchange
with the EMIT and these may now be freely used as additional memory in
your TBASIC program:

a) emnt[1l] to em nt[16]: These are 16 bit unsigned integer
variables.

pb) enEvent[1l] to enEVENT[16]: These are 16 bit unsigned integer
variables. EMEVENT[1] is also used for email purpose.

c) enLlint[1] to enllnt][16]: These are 32-bit unsigned integer
variables.

Note that since EMLINT[1] to EMLINT[16] form an integer array, these 32-bit
integer variables can be easily addressed by an index such as EMLINT[N]
which is not possible on the 32-bit integer variables A 1o Z.

10-8

Chapter 11: TBASIC Keyword Reference

ABS(x)

Purpose . To return the absolute value of the numeric expression x

Examples A = ABS(2*16-100)

Comments : A should contain the value 68.

ADC(n)

Purpose To return the value from the Analog-To-Digital Converter channel
#n. nshould be between 1 and 16.

Examples A = ADC(2)

Comments n may be a numeric expression which returns a value between 1 and

16. If it is out-of-range, a run-time error will be reported and the
function will be aborted.
TRILOGI software is able to support up to 16 channels of 16-bit bipolar
ADC (which may has a range between -32768 to 32767. The actual
number of ADC channels and the resolution will depend on the target
PLC. On the TL.00MD+ and T100MX+, all the A/D are normalized to 12-
bit with a range of between 0 and 4096.

ASC(x$, n)

Purpose To return the numeric value that is the ASCIlI code for the nth
character of the string x3. If x$ is a null string, ASC(x$,n) returns value
0. » may start from 1 up to the length of the string.

Examples B = ASC("Test String",6)

Comments B should contain the value 83 (which is ASCIl value of 'S). If n is less than
1 or greater than string length, ASC(x$, n) returns a 0.

See Also CHR$(n)

CALL n

Purpose To call another Custom Function CuskFn #n as subroutine. When the
called function returns, execution will contfinue from the following
stafement. »n must be either an integer constant between 1 and
256, or the label name of the Custom Function defined in the
Custom Function table.

Examples IF B >5 THEN CALL 8 : ENDIF

See Also

CALL Addition
RETURN

“*Addition” must be a defined name.

CHR$(n)

Purpose : To convert a number n into its corresponding ASCIlI character. n
must be a numeric constant (0 to 255)
Examples C$ = "This is Message #" + CHR$(&H35)

Comments : C$ should contain: "This is Message #5", since CHR$(&H35) returns the
character '5'.

See Also : ASC()
CLRBIT v, n
Purpose . To clear the Bit #n of the integer variable v to '0'. n is an integer

constant or variable of value between 0 and 15. v may be any
integer variable or a system variable such as relay[n], outpuf[n],
etc. If vis a 32-bit integer, CLRBIT will only operate on the lower16
bits.

Following digital electronics convention, bit O refers to the least
significant bit (right most bit) and bit 15 the most significant bit (left
most bit) of the 16-bit integer variable. A quick way to find out the
bit position and index of an I/O variable is to open their /O table
and check the “CH:BIT” column. Bit positions beyond 9 are
represented by hexadecimal numiber A to F.

Examples CLRBIT output[2],11

Comments : Physical output #28 will be turned OFF.
(Output channel #2 bit #11 = Output #17 +11 = 28)

See Also . SETBIT, TESTBIT, SETIO, CLRIO,TOGGLEIO & TESTIO

CLRIO labelname
SETIO labelname
TOGGLEIO labelname
TESTIO (labelname)

Purpose : Manipulate the logic states of any inputf, output, relay, timer or
counter contact bit within a CusFn. The labelname refers to the label
names defined in the input, output, relay, timer or counter tables.

SETIO set a bit to ON, CLRIO clear the bit to OFF, and TOGGLEIO
flip the current logic state of that I/O bit. TESTIO function retumns a
1 if the bit is ON and a O if the bit is OFF.

E.Q. SETBIT alarm
IF TESTBIT(alarm) THEN .. ELSE ..ENDIF

Comments This function offers a more efficient way of manipulating the 1/O bits
compared to the SETBIT and CLRBIT function. However, SETBIT and CLRBIT

11-2

functions have the advantage that they can use variables to indicate the
index and bit position of the bit to be affected, whereas the /O bit that
affected by the commands here are fixed during compile time. Note that
output bit changed in custom function will only be updated at the
physical output at the end of the ladder logic scan unless a “REFRESH”
command is being executed.

See Also : SETBIT, CLRBIT

* CRC16 (var, count) {* Applicable only to PLC with firmware r44 or higher}
Purpose : This function returns the computed CRC16 for a range of integers
starting from variable “var” with the range indicated in the
parameter “count”. CRC16 is a 16-bit version of “Cyclic
Redundancy Check” - a popular mathematical formula for

checking error in a datfa stream.

Examples DM[100] = CRC16(DM[5],8)

X = CRC16(RELAY[2].4)

Comments : CRC16 for DM[5], DM[6].....DM[12] will be assigned to DM[100]
CRC16 for RELAY[2], RELAY[3], RELAY[4] will be assigned to X.

DELAY n
Purpose : To provide a time delay of n millisecond to the process.
Example DELAY 100

Comments : Provide a 100 ms (0.1s) delay to the current custom function.

It is important 1o note that this is a “orute force” delay method and only to
e used with caution. When a DELAY function is executed the CPU waits atf
the statement until the period specified by the “delay” is over. This means
that all the remaining ladder programs and other custom functions will stop
responding to changing input conditions, only system services (serial input,
counfdown fimers and host link commands etc) as well as inferrupt driven
CusFns will work during the period of delay. This may not be desirable if the
rest of the process must respond to fast changing inputs. For delays longer
than 0.1s a much better way is to invoke the regular PLC timer and use the
timer contact to trigger another custom function atf the end of the delay.

For the TTIOOMD+ and T100MX+, the minimum delay provided by this
function is 10ms, and the resolution of the time delay is 10ms. This means if
you execute DELAY 155 the actual delay will be rounded to 160ms, and
for DELAY 154 the actual time delay will be 150ms.

FOR ... NEXT

Purpose

Syntax

Examples

Comments

See Also

To execute a series of instructions for a specified numiber of fimes
in aloop.

FOR variable = x TO y [STEP Z]

NEXT

where variable may be any integer variable A to Z only and is
used as a counter. x, y and z are numeric expressions. STEP z is an
optional part of the statement.

x is the initial value of the counter, y is the final value of the counter.

Program lines following the FOR statement are executed until the
NEXT statement is encountered. Then the counter is incremented
by the amount specified by STEP. If STEP is not specified, the
increment is assumed to be 1.

A check is performed to see if the value of the counter is greater
than the final value y if STEP is positive (or smaller than the y if
STEP is negative). If it is not greater, the program branches back to
the statement after the FOR statement, and the process is
repeated. If it is greater, execution continues with the statement
following the NEXT statement. This is called a FOR-NEXT loop.

A run-time error will result if STEP is evaluated to be 0.

FOR I=1 TO 10
FOR J = 100 to 1 STEP -10
DM[1] = DM[J]
NEXT
NEXT

FOR-NEXT loops may be nested; i.e. a FOR-NEXT loop may be placed
within the context of another FOR-NEXT loop. When loops are nested,
each loop must have a unique variable name as its counter. The NEXT
statement for the inside loop must appear before that for the outside
loop. Each Loop must have a separate NEXT statement to mark the end
of the loop.

WHILE ... ENDWHILE

GetCtrSV (n)

GetTimerSV (n)

Purpose

Return the Set Value (S.V,) of the Counter #n or Timer #n.
n should be between 1 and the maximum number of timers and
counters in your PLC.,

Note

See Also

Although the present values (P.V.) of timers and counters #n can
be accessed directly as variables “TimerPV[n]" & “CHPV[n]", the Set
Values however can only be obtained by these two functions.

SetCtrSV, SetTimerSV

GETHIGH16(v)

Purpose This function returns the upper 16-bit of a 32-bit integer variable v.
This can be used to break the value of a 32-bit integer data or
variable into two 16-bit values so that they can be saved to the
EEPROM or to the DM[N].

Examples DM[1] = GetHIGH16(A)

save EEP GetHIGH16(&H12345678), 10

See Also SETHIGH16

GOTO @ n

Purpose To branch unconditionally out of the normal program seguence to
a specified line with label @n within the present Custom Function.
The destinatfion line must have a corresponding line label marked
as "@n", where n must be a constant within 0-255. Note that the
label is local only to the present CusFn. i.e. another CusFn may
have a label with the same n but the GOTO @n will only branch to
the line label within the same CusFn.

Examples @156 SETBIT 0,3

GOTO @156

Comments An error message will appear during compilation if the destination label
is undefined.

HEX$(n)

HEXS (n, d)

Purpose To retun a string that represents the hexadecimal value of the
numeric argument x. If the second format is used then this function
will return a string of 'd” number of characters.

Examples A$ = HEX$(1234)

B$ = HEX$(1234,7)
Comments A$ will contain the string : "4D2" , B$ will contain the string “00004D2”.
See Also HEXVAL(), STR$(), VAL()

HEXVAL (x$)

Purpose

Examples
Comments

See Also

To return the value of a hexadecimal number contained in the
argument xS.

B = HEXVAL(''123')*100
B should contain the value 29100 (&H123 =291)
HEX$(), STR$(), VAL()

HSCDEF ch, fn_num, value

Purpose

Important

Example

Comments

Enable and set up parameters for the High Speed Counters
channel ch. These counters operate independently of the ladder
logic scan time and can capture high speed input pulses
generated by position encoders.

ch = channel number (1-8)
fn_num = Custom Function # to trigger when value is
reached.

value = trigger when HSC reach this (32-bit) infeger value.

If the PLC supports quadrature encoder inputs, then the HSC
counter variable HSCPV[ch] will increment/decrement according to
direction of rotation. When value is reached, the specified custom
function activates immediately.

: All High Speed Counters are disabled automatically when the PLC

is reset unless they are enabled by the HSCDEF statement.
However, if more than one HSCDEF for the same channel ch is
executed, only the last executed HSCDEF statement will take
effect. Hence you should put the next HSCDEF statement within the
Cuskn triggered by the first HSCDEF. By chaining the HSCDEF
statement from one CusFn to another, you can control the motion
of the machine using the HSC value to execute a series of CuskFn
one by one. Within these CusFn you can program what to do to
confrol the motion. E.g. changing the speed, putting on the brake,
change direction of motion, etc. You can use the SETIO, CLRIO for
digital ON/OFF control and setDAC, setPWM for proportional
control.

HSCPV[1] = O
HSCDEF 1,19,-3310003
SETLCD 1,1,STR$(HSCPV[1],6)

Enable High-Speed Counter #1 and make it activate function #19
when the counter reaches -33,100,003. Present value of HSC#1 was
cleared to O before activating it. Note that TRILOGI Version 5.x does not

11-6

perform simulation of the High Speed counter operation since there is
no High Speed Counter inputs on the simulator screen.

See Also HSCOFF

HSCOFF ch

Purpose Disable High Speed Counter #ch (ch = 1 10 8)
If you no longer need the high speed counter, it should be
disabled in order not to waste the CPU’s time 1o service the interrupt
generated by the change of state at the HSC input..

HSTIMER n

Purpose To define PLC Timer #1 to #n as “High Speed Timers” (HST). A HST

counts down every 0.01s instead of every 0.1s for normal timer,
and their other properties are identfical to normal timer. Those
Timers whose number are above n are not affected and remain
ordinary timers.

IF .. THEN .. ELSE .. ENDIF

Purpose

Syntax

To make a decision regarding program flow based on the result
refurned by an expression.

IF expression [THEN]

If the result of the expression is non-zero (logical frue), the block of
program lines between the THEN and the ELSE statements will
e executed. If the result of the expression is zero (false), the block
between the IF and ELSE will be ignored, and the block between
the ELSE and ENDIF statements will be executed instead.

If there is no ELSE statement, and if the result of the expression is
false, the block of program lines between the THEN and the ENDIF
statement will be ignored, but execution will contfinue right after the
ENDIF statement.

Nesting of IF statement

Statement blocks within the IF..THEN..ELSE statement may contain other
IF..THEN..ELSE blocks (nesting). Note that each IF statement must be ended with
the ENDIF statement. Otherwise an eror message "IF without ENDIF" will be
reported during compilation.

Testing Equality: Special comparison operators may be used in the expression of
the IF statement. Only integer expression may be compared. For comparison of
strings, please refer to the "STRCMP(AS, BS)" function.

Equal =
Not Equal <>
Greater than >
Less than <
Greater than or Equal to >=
Less than or Equal to <=
Examples IF A >= B*5-20*C OR C=20
B = B-1
ELSE
B = B*3
ENDIF

Comments : A few comparison expressions may be linked with logical-AND (AND
statement) or logical-OR (OR statement) operator as shown in the
above examples.

INCOMM(ch)

Purpose . To return a single 8-bit binary data obtained from Comm. channel
ch.

ch must be a numeric constant between 1 and 8. The actual
target hardware determines the valid port #. This function returns -1
if there is no data waiting at serial port.

Example FOR I=1 to 100
DM[I] = INCOMM(2):
IF DM[1]<0 RETURN :ENDIF
NEXT

Comments : Usually the PLC buffers the serial data arriving at its COMM port so that
the program does not need to continuously check the COMM port for
data. When the program is ready to process the data it can use the
FOR..NEXT loop shown in the above example to read in all the data in
the COMM buffer until it encounters a -1, which indicates that the buffer
is empty.

Note: INCOMM is now supported on all COMM ports of T100MD1616+ and
T100MX+ families of PLCs.

See Also : OUTCOMM, INPUTS$(), PRINT #

INPUTS$(ch)

Purpose

Example

Comments

See Also

To return a string obtained fromm communication port # ch.

ch must be a numeric constant between 1 and 8. The actual
target hardware determines the valid port #. This function returns fO
if there is no valid string waiting at serial port.

D$ = INPUT$(2)

A Carriage Return (CR) or ASCIl code 13 marks the end of the input
string from the communication port. The returned string however will
exclude the CR character. In TRILOGI simulator, the user will be
prompted to enter the string in a pop-up window.

© INCOMM(), PRINT #, OUTCOMM

INTRDEF ch, fn_num, edge

Purpose Enable Interrupt Input channel #ch.
ch = channel number (1-8)
fn_num = Custom Function number to execute when interrupt pin
changes according to the defined edge. This is the
Interrupt Service Routine ISR.
edge = Positive number means rising edge-friggered.
0 or negative numiber means falling-edge triggered.
See Also : INTROFF
INTROFF ch
Purpose: Disable Interrupt Input channel # ch.
See Also INTRDEF
LEN (x$)
Purpose To return the number of characters in x$.
Examples L = LEN("This is a test string"+CHR$(13))
Comments L = 22 because blanks and non-printing characters are counted.
LET
Purpose To assign the value of an expression to a variable
Syntax [LET] variable = expression
Examples LET D = 11
A$ = "Welcome to TBASIC"
Comments LET statement is optional: i.e. the equal sign is sufficient when assigning

an expression to a variable name. The variable type on both sides of the

Important

equal side must be the same. i.e. string variable may not be assigned
to a numeric expression and vice-versa.

: ad) When assigning a 16-bit variable to a 32-bit integer, only the

lower 16 bits of the 32-bit integer will be assigned. Hence the
programmer must take special care if the 32-bit numiber is out
of the range of a 16-bit number (which is between -32768 to
32767).

p) If a negative 16-bit number is assigned to 32-bit infeger
variable, then the sign bit will be extended to 32 bits.
e.g. DM[1] = -123.
A = DM[1]
The 16-bit hexadecimal value of -123 is &HFF85, but A will be
assigned the hexadecimal value &HFFFFFF85. Their decimal
representation are however the same.

LOAD_EEP(addr)

Purpose To retun a 16-bit infeger value saved in the EEPROM by the
SAVE_EEP statement.
addr - EEPROM address in TRILOGI version 5.x. Actual PLC may
have less EEPROM space. Please refer to your PLC's
reference manual for the upper limit.
Examples relay[1] = LOAD_EEP(10): A = LOAD_EEP(2)
See Also . SAVE_EEP
* LOAD_EEPS$ (addr) {* Applicable only to PLC with firmware r44 or higher}
Purpose This function returns a string previously saved into the PLC's internal
data EEPROM using the “SAVE_EEPS command.
Examples X$ = Load EEP$(5)
FOR I =1 to 5
$$[1] = Load _EEP$(1+10)
NEXT
Comments 1. String saved in EEPROM string location #5 is loaded into X$
2. Strings saved in EEPROM string locations #11 to #15 are loaded
into A% to E$ ($3[1] to $$[5] represents A$ to E$)
See Also SAVE_EEPR$ for explanation of how the data EEPROM area are

organized in the M-series PLC's t0 provide storage area for both
integers and strings.

11-10

LSHIFT i, n

Purpose To shift 1 bit to the left the integer variable i which must be either

an infeger variable, a DM[n] or a system variable such as relay[n],
output[n], etc.
LSHIFT instruction permits more than one variable to be chained
together before performing a bit shift. The parameter » indicates
the number of channels to bbe chained starting from i upward. n
=1 if only one variable is involved.

Examples LSHIFT relay[2],3

Comments The relay channels #2,#3, and #4 (which represent relays number #17
to #64) are chained together in the following manner:

LSHIFT
15 0 15 0 15 0
Relay[4] Relay[3] Relay[2]
Bits are shifted from the lower channel towards the upper
channel. Bit #15 of Relay[2] will be shifted into Bit #0 of Relay[3]
and so on. Bit #15 of the highest channel Relay[4] will be lost.

See Also RSHIFT

MID$(x$, n, m)

Purpose This function retuns a sub-string of m characters from x§, beginning
with the nth character.
x$ - any string expression, variable or constant.

n - ANy numeric expression producing a result of between 1 to
255
m - any numeric expression producing a result of between 0 to
255.
Examples A$ = MID$("'Welcome to TBASIC",4,7)
Comments A$ should contain the string :"come to".

NETCMDS$ (ch, x8)

Purpose

This function sends a multi-point host link command string specified
in the x$ via serial port #ch to another M-series or H-series PLC. [t will
then wait for a specified amount of time for a response string from
the other PLC and this response string is then returned.

ch - This refer to the communication port #. Please refer to the target
PLC for details.

x$ - contains a valid host link command in multi-point format, excluding
the Frame Check Sequence (FCS) and the terminator characters (*

11-11

and CR). NETCMDS function will automatically compute the FCS
and append to the end of x§ and together with the terminator
characters will be sent to the other PLC via COMM #ch.

Note: 1) If the target PLC does not respond then this function returns an
empty string.

2) This function checks the FCS of the response string, and if the FCS
is wrong it indicates an error in the serial reception and it will return
an empty string.

Examples A$ = NETCMD$(3, "@05RI100™)

Comments : To read the Input channel #0 of the PLC with ID = 05 connected to
COMM #3 of this PLC. The response string will be assigned to A$.

Special . If the last character of x§ is a “~" character, NETCMDS will send out the
string without the '~" character. It will not append the FCS and ™’ to the
outgoing string and it will not send out the carriage return (ASCII 13)
character. It will also NOT check the response string for FCS. This allow
NETCMDS to be used to interface to third-party ASCIl devices with
different command/response formats.

E.g. A$ = NETCMD$(3, “Hello World~"")

The string “Hello World” will be sent out of serial COMM port #3. AS will
receive the full returned string without applying any FCS check on the
return string.

OUTCOMM n, x

Purpose . This statement can be used to send an 8-bit byte of data ' x ' via
Comm port #n. This command is added because PRINT#n
command cannot be used to send out CHRS(0). Zero is treated as
the end of a string in TBASIC and will be ignored if you use PRINT #n
statement to send out CHRS(0).

Examples OUTCOMM 2,225

PAUSE

Purpose: To set a breakpoint for executing the CusFn. This is used mainly for
debugging a CusFn. By Inserting a PAUSE statement at the place of
interest, you can suspend the program execution when PAUSE is
encountered, after which you may examine the values of the
relevant variables. You can continue to perform on-line monitoring of
the PLC that has been paused. Program execution can also be
contfinued by pressing the <P> key during Simulation or On-line
Monitoring.

11-12

PIDcompute(ch, E)

Purpose: This function computes the output for the PID compensator/ controller,
using the P,I, and D Gains defined in the PIDdef statement for the
same channel ck. The integral and differential values are stored within
the channel's internal data space and will be automatically used by
the PID computation routfine. The PIDcompute() function uses the Imt
(max. limit) term of PIDdef statement to limit the results of ifs
computation. If the absolute value of the computed result is greater
then "Im¢", then the result will be set equal to "Imt" for +ve number and
to "-Imt" for negative value. When this happens, the integral term will
not accumulate the current error to prevent an ‘integrator windup"
which is very undesirable for the system.

ch = channel number (1-16)
Err = Closed-loop Error.
(i.e. Set point value - Feedback Value)

The controller may obtain feedback from ADC, High Speed Counters,
PULSEFREQUENCY or other means. The obtained result is then
scaled and subtracted from the desired (set point) value to get "Err ".
All computations are performed in 32-bit integers and the function
retuns a 32-bit infeger that can be assigned to any variable. Any
scaling for actual output (DAC or PWM) will be computed by the user
within the same CusFn and sent to the output.

Example :

10,000 PLC-PID PWM#4

Plant
Controller

A/D#2

Sensor

E.g. Implementing Closed-loop Digital Control with
PID computation function

E = 10000 - ADC(2)*20
A = PIDcompute(5,E)
setPWM 4, (A + 8000)/100

Comments: The set point value is 10000 units, the feedback value is read from ADC
channel #2 and then multiplied by 20 to convert (scale) it to the same unit
as the parameter to be controlled. PID computation channel #5 (assume
somewhere in the program a PIDdef for channel #5 has been executed
before) is then used to compute the desired controller output value using
the error signal (= set point - feedback value ADC(2) x 20).

11-13

Important:

The desired output (stored in variable A) is then added to the offset value
8000 and then scaled down by a factor of 100 before being sent out
physically via PWM Channel #4.

In actual implementation, use a clock pulse such as 0.1s, 0.5s or 1s
etc to periodically activate the PIDcompute() function so that digital
control in discrete-fime can be implemented. The PID sampling
period depends on the time constant of the system. For very slow
response processes such as the cooking temperature of a large body
of water, the fime constant is very large and even slower than 1.0
seconds clock may be sufficient. Do not use unnecessarily short
sampling time because it increases computation fime and slows
down overall performance of the system.

PiDdef ch, Imt, P, I, D,

Purpose:

Important:

To set up the parameters for a Proportional, Integral and Derivative
(PID) Controller function. The function PIDcompute() will make use of
the parameters defined here for the corresponding channel #ch.

ch = channel number (1-16)

Imt = Maximum (saturation) limit for the computed result.
P = Proportional Gain (Kp)

I = Integral Gain (K;)

D = Differential Gain (Kp)

Transfer Function of a PID Controller are defined as follow:

Kl
G(s) =Kp+ ? +KpsS

1

Porportional Band
1

Integral Time Constant

Kp = Proportional Gain =

K; = Integral Gain =

All four parameters: Imt, P, I & D can be either 16 or 32-bit integer
constants or infeger variables. For the Imt term, the computed
confroller output value by the PIDcompute() function is not
allowed beyond the + Imt value (i.e. Imt represents the saturation point
of the computed controller outfputf). PIDcompute() function
implements 'Integrafor anti-windup" feature, which will avoid
integrating the error signal when oufput is already saturated .

When this statement is run, the integral and differential terms of
channel ch is set 1o zero. Hence PIDdef should be run only once
during inifialization and not repeatedly executed. Otherwise the

11-14

PIDcompute() function will not run properly because of the loss of
infegral and differential data.

See Also: PIDcompute()

PMON ch
PMOFF ch

Purpose: PMON enables Pulse Measurement Function at channel #ch, whereas
PMOFF disables the channel. After enabling the channel, you may
then use the functions PULSEWIDTH(ck) and PULSEPERIOD(ck) to
obtain the width and period of the input pulses arriving at the pulse
measurement input pin. You must call PMON once during initialization
to enable the pulse measurement hardware. Otherwise the two
functions will only return 0. You should avoid repeatedly executing
PMON function, otherwise the pulse measurement hardware will be
reset repeatedly as well, and accurate measurement cannot be
obtained.

If you no longer need to measure the pulse-width or period for a
particular channel which has been PMON before, you should disable it
using PMOFF to save CPU fime because pulse measurement is
interrupt driven and consumes CPU time.

Example: PMON 1 : PMOFF 5
See Also: PULSEWIDTH(), PUSEPERIOD()

PRINT# n x$; y, z.... Statement

Purpose . To send a string of ASCII characters formed by its parameter list (x3;
y, z) out of the PLC to other devices via the communication port #n.

Parameters: n must be an integer constant of between 1 and 8. Infeger value in
the parameter list (y, z..) will be converted into the equivalent ASCI
representation. Each parameter must be separated by the
semicolon(;).

Acftion . The ASCII string is first formed by the PRINT statement using all the
arguments in the argument list and the completed string is then sent
out of the serial channel #n at one go. The PRINT statement
automatically sends a Carriage Return (CR-ASCII 13) out of the
specified serial port after sending out the last character in the
argument list. A PRINT statement that ends with a semi-colon %",
will not send the CR character.

11-15

If you have a long string to send than you can use ";" to break the
whole command info several lines, with each line ending with a ;"
except the last lines.

Examples PRINT #2 "The value of A+B = "';A+B;
PRINT #2 "Units"

Comments IF A=5 and B=100, the string "The value of A+B = 105 Units" and a CR
character will be sent out via Comm. port #2. In TRILOGI simulation
mode, the ASCII string will be displayed on a pop-up window to simulate
PRINT action.

See Also INPUTS$()

PULSEFREQUENCY/(ch)

PULSEPERIOD(ch)
PULSEWIDTH(ch)

Purpose:

Example:

See Also :

Return in Hz the frequency of the last input pulse; Return in
microseconds the width or period of the input pulses arriving at
channel #ch of the pulse-measurement pin. The pulse-
measurement channel #ch must have been enabled by the
PMON statement already. If the pulses stop coming in then
PULSEFREQUENCY will return a zero while the other two functions will
saturate at a certain maximum value (for TIOOMD+ it is equivalent
to about 3.28 seconds)

ch = channel # (1-8)
A = PULSEWIDTH(1)
PMON, PMOFF

READMODBUS (ch, ID, addr)

Purpose

Example

. Use the MODBUS ASCIlI or RTU protocol to automatically query @

MODBUS ASCIlI or RTU slave device and obtain the desired 16-bit
reqister data. The communication baud rate is the default baud rate
of that Comm port unless it has been changed by the SETBAUD
command.

ch - PLC Comm port number
(1to 8 using Modbus ASCII or 1110 18 using Modbus RTU).
I D - device ID of the MODBUS device (1 to 255)
addr - zero-offset address of the holding register in the MODBUS
device.

relay [3] = READMODBUS(3, 5, 101)

11-16

Comments :

See Also

The relay will contain the 16-bit data obtained from the MODBUS device
with ID = 05 and from register offset address 101 (in MODBUS term this
refer to the #40102 holding register) . Reading it into the relay[] channel
allows bit level manipulation by ladder logic. It can of course also be
read into any data memory.

This command automatically checks the response string received
from the slave device for the correct LRC and the slave address. The
status of the operation can be checked by the user program by
testing the STATUS(2) function, which will return a ‘O’ if there is any
error or if the slave device is not present.

: WRITEMODBUS, STATUS(2), NETCMD$()

*READMB2

Purpose

Parameters:

Example

Comments

See Also

ch, ID, addr, var, count {* Applicable only to M+ firmware r44 or higher}

: Think of this as the multi-word version of READMODBUS command.

Unlike the READMODBUS command which is a function that returns a
single 16-bit word, this command is implemented as a statement so
that multiple words of data can be stored into the PLC internal
memory .

ch - PLC COMM port number

(1to 8 using Modbus ASCII or 1110 18 using Modbus RTU).

Device ID of the MODBUS slave device (1 to 255)

Zero-offset address of the holding register in the

MODBUS slave device starting from 0 = 40001.

var - the staring variable in the master for storing the
returned data. (may be a DM or any system variable)

count - number of variables to read (max. =16 in M+ PLC).

| D
addr

READMB2 3,5,101,DM[10],8

The PLC will use MODBUS ASCII protocol, via its Comm port #3, to query
the slave MODBUS device with ID = 05 and ask for 8 words of data
starting from register offset address 101 (in MODBUS term this refer to the
#40102 holding register) . Once it receives the returned data these 8
words will be stored in the memory locations: DM[10], DM[11],.....DM[17].

This command automatically checks the response string received
from the slave device for the correct slave address and LRC (or
CRC16 RTU protocol is used). Like READMODBUS command, the
status of this operation can be checked by the user program by
testing the STATUS(2) function.

WRITEMB2, STATUS(2)

11-17

REFRESH

Purpose

To Force immediate refresh of the physical inputs and outputs. This
can be used after executing a SETBIT or CLRBIT command on
an outfput[n] variable and to force the physical oufput to change
immediately (subject to I/O refresh time delay). Otherwise, the
physical output will only be updated during the normal refresh
cycle which will occur only at the end of every ladder logic scan.

This is useful for situations which require immediately action such as
shutting down a load during an emergency. This commmand is likely
to be used mainly by an Interrupt CusFn.

REM (or') Statement

Purpose

Examples

To allow explanatory remarks to e inserted in a program. The text
after the REM statement until the end of the line will be ignored by
the compiler. An abbreviation for the REM statement is the
apostrophe (')

REM Waiting for the right time to turn on
" This i1s also a remark line.

RESET
Purpose

To perform a software reset of the PLC from within a CusFn. All the
variables will be reset 1o zero or inactive and all the hardware
outputs such as DAC and PWM will be turned OFF. The effect is the
same as the Master Reset [MaRST] function in the ladder logic. The
first scan bit (1st.Scan) will also be turned ON for one scan fime.

However, if the program is stuck at some dead loop (such as
WHILE, FOR-NEXT) in a CusFn, then [MaRST] would not be executed
since the ladder program would not have a chance fo scan the
ladder rung containing the [MaRST] function. If this command is
used by an interrupt service function, then it is possible to get the
system out of the dead loop since the interrupt function can
interrupt the dead loop and reset the PLC.

RETURN

Purpose

Unconditionally ends the execution of the current CusFn and return
to the caller (which is either the ladder program or another Cuskn
which has executed a CALL command).

11-18

See Also

Use of the RETURN statement is optional if there is no conditional
ending required. After executing the last statement the CusFn will
refurn to the caller automatically.

CALL

RSHIFT i,n Statement

Purpose

Examples

Comments

See Also

To shift the integer variable i 1 bit to the right. i must be either an
integer variable, a DM[n] or a system variable such as relay[n],
output[n], etc.

RSHIFT insfruction permits more than one variable to be chained
together before performing a bit shift. The parameter n indicate
the number of channels to be chained starting from i upward. n
=1 if only one variable is involved.

RSHIFT relay[2],3

The relay channels #2,#3, and #4 (which represent relays number #17
to #64) are chained together in the following manner:
RSHIFT

15 0 15 0 15 0

Relay[4] Relay[3] Relay[2]

Bits are shifted from the upper channel towards the lower channel. Bit
#0 of Relay[4] will be shifted into Bit #15 of Relay[3] and so on. Bit #0 of
the lowest channel Relay[2] will be lost.

LSHIFT

SAVE_EEP data, addr

Purpose

Example

See Also

To store a 16-bit integer data in the users definable EEPROM
address addr for non-volatile storage. If you attempt to save a 32-
bit data, only the lower 16-bit will be saved. To save the entire 32-
bit data, save the upper 16-bit using the GETHIGH16() function
and the lower 16-bit directly in two separate locations.

data - may be a 16-bit infeger constant or variable.

addr - EEPROM address. Actual PLC may have less EEPROM
space. Please refer to your PLC's reference manual for
the upper limit.

save EEP rel ay[1], 100

LOAD_EEP(), GETHIGH16(), SETHIGH16, LOAD_EEP$() and
SAVE_EEP$

11-19

* SAVE_EEP$ strdata, addr {* Applicable only to PLC with firmware r44 or higher}

Purpose : To store a string strdata in the user's definable EEPROM address addr
for non-volatile storage.

stringdata - mMay be any string constant or string variable.

addr - EEPROM address (1,2,3...). Please refer to your PLC's
reference manual for the upper limit of EEPROM
space.

Example save_EEP$ A$,3

Comments . The content of A$ will be stored at string space #3 of data
EEPROM.

See Also . LOAD_EEP$()

Save_EEP$ Implementation on M+ PLC

Save EEPS and Load EEPS are two new TBASIC commands available only o
the newest M+ PLC with firmware revision r44 and above. These commands
allow you to save “strings” into the non-volatile data EEPROM area of the PLC.
The EEPROM space is divided into 40-byte chunks for string storage. l.e.
regardless of the length of the string, each string storage location will occupy @
fixed 40-character length. Hence if “stringdata” parameter is longer 40
characters then only the first 40 characters will be stored in the EEPROM, the
remaining characters will be discarded.

The string and integer data actually share the same pool of data EEPROM
space. However, the string spaces are allocated from the top of the data
EEPROM space downward, while the integer spaces are allocated from the
pbottom of the data EEPROM space and grow upward. This implementation
allows say both SAVE EEP n, 1 and SAVE _EEPS xS, 1 to be executed in the
same program without the string and integer data writing over each other
space.

However, when the addresses grow larger up to a certain point, the infeger
and string data space will cross path and overwrite each other's space. If is
therefore the programmer’s responsibility 1o check that this does not happen.
Here is how:

Assume the total EEPROM space for infeger data = N words (16 bit).
Total number of data EEPROM space = 2N bytes
=> Maximum number of string EEPROM space = 2N/40 (rounded down).

11-20

To determine the upper limit of one type of storage, you have to first decide
how much space you want 1o allocate to the other type.

E.g. 1: N = 1700, and you want use the first 510 location for integer data, that
means the moaximum number of string space available = (1700-
500)*2/40 = 59.

E.g. 2. N = 7700, and you want to store 200 strings. The maximum number of
integer space available = (7700*2 — 200*40)/2 = 3700.

SETBAUD ch, baud no

Purpose

Examples

To set the communication "Baud Rate” of the PLC’s serial channel
#ch. All the M series PLC serial ports are defined as 8 data bit, 1
stop bit, and no parity and each has been preset 1o a certain
default baud rate, which the PLC will assume every time its powers
up. The baud rate may or may not be changed, depends on the
PLC model. Please refer to the PLC’s User's manual for the baud no
that represent the baud rate of each serial channel and the range
of baud no each of these serial ports may assume.

Caution should be taken when programming the baud rate of the
"Host link” port because if a wrong baud value is set the host PC
may not be able 1o communicate with it, If this happens suspend
the PLC using its hardware switch and reset the PLC and re-load
the program with correct seffing.

SETBAUD 3,3 “ Set serial port #3 to 9600.

SETBIT v,n

Purpose

Examples

To set the bit #nr of the integer variable v to '1'. n is an integer
constant or variable of value between 0 and 15. v may be any
integer variable or a system variable such as relay[n], outpuf[n],
etc. However, if vis a 32-bit integer, SETBIT will only operate on
the lower 16 bits.

Following digital electronics convention, bit O refers to the least
significant bit (rightmost bit) and bit 15 the most significant bit.
(leffmost bit) of the 16-bit integer variable. A quick way to find out
the bit position and index of an /O variable is to open their 1/O
table and check the "CH:BIT” column. Bit position beyond 9 are
represented by hexadecimal numibber A to F.

SETBIT output[2],11

11-21

Comments : output #28 will be turned ON.

See Also

(Output channel #2 bit #11 = Output #17 +11 = 28)

CLRBIT, TESTBIT()

SetCtrSV n, value
SetTimerSV n, value

Purpose

Examples

Comments

Related

See Also

Change the Set Value (S.V,) of the Counter #nrn or Timer #n to
value. This statement 1o allow the user to modify the S.V. of the PLC
internal timers and counters without changing the source program.
A TBASIC function can be written easily to make use of a few digital
or analog inputs to modify the SV of these internals timers/counters.
The new S.V is also stored in the program EEPROM and hence is
non-volatile. (See sample program “set TCSV.PC4")

n should be between 1 and 128.
value should be between 0 and 9999.

SetCtrSV 10,1234
SetTimerSV 3, GetTimerSV(3)+10

Counter #10 will assume a S.V. of 1234..
S.V of Timer #3 will be increased by 10.

The present values (P.V.) of timers and counters can be read or
written directly as integer variables “TimerPV[n]” & “CtPV[n]”. But the
Set Values can only be changed by these two functions.

GetCtrSV(), GetTimerSV()

SETDAC n, x Statement

Purpose

Examples
Comments

To set channel #n of the PLC's Digital-to-Analog Converter (DAC)
with the 16-bit integer result of the expression x. » must range
between 1T and 16. Once set, the DAC channel will latch the set
value until the next SETDAC statement on the same channel is
executed.

SETDAC 5,A+B*16

DAC channel #5 will be set with the value of A+B*16. A run- time error
will result if n is less than 1 or is greater than 16. The actual number of
DAC channels depends on the PLC model in use.

SETHIGH16 v, data

Purpose

To assign the upper 16-bit of a 32-bit infeger variable v to data. The
lower 16-bit of v is unaffected. This can be used to construct the

11-22

Examples

See Also

value of a 32-bit integer data using two 16-bit data obtained from
either the EEPROM or the DM[n].

A = DM[2]
SETHIGH16 A,DM[1]

GETHIGH16()

SETIO labelname -- Please refer to the definition of CLRIO command

SETLCD n, offset, x$

Purpose

Examples

To display the sting expression x§ on Line #n on built-in
alphanumeric Liquid Crystal Display (LCD) or compatible Vacuum
Fluorescent Display (VFD). x§ may be formed by concatenation of
various strings using the '+° operafor (e.g. “‘Temp
="4+STRS(A,3)+CHRS(223)+" C"). Integers must be converted to
string using the STRS() or HEXS() function to be accepted by this
function,

Special case: if n =0 the string x$ will be sent to the LCD’s
“Instruction-Register” which allows hardware-specific LCD
configuration such as clear screen, set cursor ON/OFF etc.
(please refer to LCD’s manual for details)

The parameter offset = 1 to 40 allows you to send the string x3$
beginning from the offse" position. Only the characters position o
e occupied by x$ will be written 1o the display, other characters of
the display remain unaffected.

The PLC may support LCD display modules capable of displaying
up 1o 4 lines x 40 characters per line of alphanumeric characters. If
the display has fewer lines or fewer characters per line, the
unavailable lines or characters will be ignored by the PLC. Once
set, the LCD display will latch the set value until the next SETLCD
statement on the same line and same offset is executed. On the
TRILOGI simulator, the result of the SETLCD is displayed together with
the Special Variables view screen.

SETLCD 1,1,"This is a 1x20 LCD Display™

SETLED n, m, value

Purpose

To display the integer value on the PLC's built-in 7-segment LED
displays, starting from the nth digit and occupying m number of
digits. Leading zeros will be added to the left of the display if value
occupies less digit than that specified by m.

11-23

Examples

Comments

However, if m is less than 1 (e.g. m = 0) then value is treated as a
single 8-bit ASCII character to be displayed rather than as a
numeric value. Special symbols may be displayed on the LED
panel if the LED driver is able to display the corresponding ASCI
character.

n must be between 1 to 16. The digit position is counted from left
to right. i.e. the leftmost LED digit is digit #1. TRILOGI supports up to
16 LED digits. The actual number of LED on the PLC may vary from
0 to 16, in this case only the available digits will be effective. Value
may be a 16- or 32-bit integer number. Once set, the LED display
will latch the set value until the next SETLED statement on the same
digit is executed. On the TRILOGI simulator, the result of the SETLED
is displayed together with the Special Variables screen, which may
be viewed by pressing the <V> key while in the simulation mode.

SETLED 5,4,89
LED digit #5 to #8 (counting from left to right) displays 0089.

SETPASSWORD string

Purpose

Example

Comments :

: When this statement is executed, the PLC will not properly respond

to any host link commands sent fo it except the command
PWxxxx...xx" which must contains the same sfring “xxxx...xx" (not
more than 19 characters) as defined in the SETPASSWORD
command. All other commands will receive a "PWER" response
indicating a “password error” state. Once the correct password has
been accepted the PLC will work as normal and respond to all host
link commmands. Execution of "PW” host link command without any
sting will put the password lock back in force to prevent
unauthorized access.

SETPASSWORD ““1 love TRiLOGI”

When using TRILOGI the software will automatically prompt you to
enter the password string if it encounters a PLC which has been
password-locked. Note that the password is case sensitive. Password
locked PLC cannot be accessed by older version of TRILOGI.

This feature is mainly used to protect an unattended PLC which is linked
to an auto-answer modem. Without password protection anybody can
dial in with a TLServer or TL41.exe and have full control of the PLC, which
may be a serious security problem. Within the PLC software you may also
use a timer to periodically re-arm the PLC with this command for
maximum protection. You can also use different passwords for different
time of the day or a set of rotating passwords to provide greater security.

11-24

SETPROTOCOL ch, mode

Purpose:

A TIOOM+ series PLC automatically senses the type of
communication protocols sent to it and responds accordingly. You
may however fix the protocol type so that it does need to check the
protocol type before responding. This commmand also allows he PLC
to be defined as *No Protocol” so that it will not automatically
respond to data that it receives which appears like one of the
supported protocols. This may be important in some applications in
which the PLC serial port is used purely to receive incoming data via
INCOMM and INPUTS and you do not want it to respond to some
data that appears 1o it as a valid communication protocols This is
also useful for implementing users own communication protocol
without worrying about conflict with the existing protocaols.

ch =1, 2 or 3 (COMM port number)

mode = 0 - Aufo sensing (default mode)
1 - Fixed at RTU mode
2 - Fixed at EMIT mode
3 - Fixed at MODBUS ASCIl mode
4 - Fixed at OMRON C20H protocol mode
5 - Fixed at NATIVE host link command mode
10- No protocol. (For creating user own custom
protocol.

IMPORTANT: Please note that if you set the protocol to other than the “Native”

(mode=5) or "Auto” (mode=0) that serial port will no longer
resoond to commands from TRILOGI and you will encounter
"Communication Errors” when you fry to perform any
communication using TRILOGI with that serial port. You can sfill
use the other unaffected serial port (e.g. COMM3, RS485) that
support host link commands.

To regain communication with the serial port you will have fo
execute another SETPROTOCOL function that set it to mode 0 or 5
(assuming it has been written into the program), or you must reset
the controller by turning OFF the power and then ON again. If you
execute a SETPROTOCOL using the 1ST.Scan then you must furn
on DIP switch #4 before powering up the PLC so that the
SETPROTOCOL command will not be executed and you can
regain control of the PLC using TRILOGI.

11-25

SETPWM n, x, y

Purpose

Examples

Comments

To set channel #n of the PLC's Pulse-Width Modulation (PWM)
output with duty cycle represented by (x/100 %) and aft a
frequency (in Hz) given by parameter y.

n must range between 1 and 8. Once set, the PWM channel will
latch the set value until the next SETPWM statement on the same
channel is executed. x should range between 0 and 10000. If x is
more than 10000, the duty cycle will be set to 100%

SETPWM 1,4995,2000

PWM channel #1 will be set to operate at 49.95% duty cycle for PWM
that can resolve up to 0.01%. The actual resolution will depend on the
PLC's PWM resolution. The PWM frequency is set to 2000 Hz or nearest.
For a 10-bit PWM the best resolution is about 1/1024 = 0.1 %. This
means that in the above example the PWM will be rounded to 50%.
Please check the target PLC's manual for the actual resolution.

SETSYSTEM n, data

Purpose:

Allow changing of certain default system’s parameters. Currently
the only data defined are those that affect the serial
communication commands. More parameters may e defined in
future.

n data

1 # of wait states (multiple of 0.15s) while waiting for
a response from a slave controller after executing
a NETCMDS or a READMODBUS/ WRITEMODBUS
command. Default number of wait state = 1.

e.g. SEISYSTEM 1, 3

The PLC will wait 3 x 150ms = 450ms for a valid
response from the slave controller.

2 # of retry if NETCMDS or READMODBUS/
WRITEMODBUS failed to get a valid response from
slave controller. Default = 2. (a total of 3 fries)

e.g. SETSYSTEM 2,5

The PLC will retry up to 5 fimes if it failed to
communicate with the slave. Nofe longer waiting
time when failure occur if you increase the number
of retries.

11-26

0 - Respond as fast as possible to hostlink or
MODBUS commands received from the
host computer or another PLC.

1 - (default)to allow at least a 0.01s (10ms) to
elapse before responding to host link
commands received from the host computer
or another PLC. This delay is needed for auto-
switch type RS485 converter 1o allow time for
the hardware transceiver to switch direction.

STATUS (n)
Purpose Return the status of various system operations.
Function Returned value
STATUS (1) 0 - Normal power on reset
1 - Reset by Watch Dog Timer (WDT)
STATUS (2) 0 - READMODBUS or WRITEMODBUS failure
1 - READMODBUS or WRITEMODBUS successful
STATUS(8) PLC’s ID address stored in EEPROM for host
communication
Examples IF STATUS(2) “ MODBUS READ/WRITE OK
ELSE “ MODBUS READ/WRITE failed
ENDIFm
STEPCOUNT (ch)
Purpose . While the stepper motor controller is sending out pulses, this

function can be used to monitor the number of stepper pulses sent
to the Stepper Motor Channel #ch since the execution of the last
"STEPMOVE” command. Hence this function returns the relative
numiber of step Mmoves.

This function can also be used to "measure” the physical size of a
part if we use the stepper motor 1o drive a sensor and use the
STEPSTOP command and the interrupt input to halt the stepper
motor when the edges are detfected. The physical size is then
computed using the number of steps the stepper motor travels
fromn one edge to another edge. The center position can be easily
determined using such data too.

11-27

STEPCOUNTABS (ch)

Purpose Returns the absolute position of the stepper motor #ch. This
function returns a zero if a STEPHOME command had just been
executed and the stepper has not been moved since.

STEPHOME ch

Purpose . Set the current position counter of stepper # ch to zero. This

indicates a new “Home” position of that stepper motor. This
command should be executed only when the stepper has reached
a particular position 1o be regarded as the home position. All
STEPMOVEABS command executed subbsequently will be relative to
the defined home position.

STEPMOVE ch, count, r

Purpose

To activate the PLC's built-in stepper motor pulse generator
channel #ch to output count number of pulses. The speed and
acceleration parameters for the motion is defined by the
STEPSPEED statement on the same channel # ch, which must be
executed at least once before the first STEPMOVE command is
issued. After executing the STEPMOVE command the PLC hardware
will fake over the actual pulse generatfion operation. The user's
program will continue to execute even though the pulse
generation is not yet completed. The internal relay #r can be
used to signal to the other parts of the ladder program regarding
the status of pulse generation, as follow:

When STEPMOVE command is first executed, the internal relay #r
will be cleared before the first pulse is sent. After the completion
of the movement (i.e. when all the pulses have already been sent),
the relay #r will be set.

ch should be between 1 and 8. Count is a 32-bit integer number
which allows you to program the stepper motor to move from 1 to
+2% (i.e. 2,147,483,647) steps. Count can also be an integer
variable A-Z. However, If you use a 16-bit variable such as DM[n] for
count then the range of movement can only be between 1 to
32,767.

11-28

Important:

Examples

Comments

See Also

Speed (pps) Stepper pulse output speed trajectory

y N

Desired speed If the total num'ber of
B . steps to move is less

than 2 times
accsteps, Desired
speed will not be
reached.

minimumT
S
P ; ; » No. of Steps

—r<¢ >
:accsteps : Total steps - 2xaccsteps | accsteps

Pulse generafion can be interrupted by issung a STEPSTOP
command in another CusFn, which may occur say, in cases when
the hardware hits a limit-switch and must stop the motor
immediately.

When a stepper channel is already activated (i.e. mid-way through
its pulse generation) repeat execution of STEPMOVE command on
the same channel will be ignored by the PLC. Re-execution of the
STEPMOVE command on this channel can only take effect after
the channel’s pulsing operation has been completed by itself or
aborted by the STEPSTOP command.

When in TRILOGI simulation mode, execution of the STEPMOVE
command will bring up a pop-up window that displays all the
parameters of the motion path.

STEPMOVE 1,5000,10

Send out 5000 pulses on channel 1 and at the end of motion turn ON
relay #10.

STEPMOVEABS, STEPCOUNT(), STEPCOUNTABS(),
STEPSPEED, STEPSTOP, STEPHOME

STEPMOVEABS ch, position, r

Purpose

. This new command allows you to move the stepper motor # ch to
an absolute position indicated by the position parameter. At the
end of the move the relay # r will be turned ON. Position can be
between -2°' to +2°' .(i.e. about +2 x 107). The absolute position is
calculated with respect to the last move from the *HOME" position.
(The HOME position is set when the STEPHOME command is

11-29

See Also

executed). The speed and acceleration profile are determined by
the STEPSPEED command as in the original command set.

This command automatically computes the number of pulses and
direction required to move the stepper motor to the new position
with respect to the current location. The current locatfion can be
determined at any time by the STEPCOUNTABS() function.

Once STEPMOVEABS command is executed, re-executfion of this
command or the STEPMOVE command will have no effect until the
entire motion is completed or aborted by the STEPSTOP command.

: STEPCOUNTABS, STEPHOME , STEPSPEED, STEPMOVE,

STEPSTOP, STEPCOUNT

STEPSTOP ch

Purpose

Examples

Important

See Also

To abort a stepper channel #ch which is in motion due 1o
exceptional circumstances.

STEPSTOP 2

Motion aborted by STEPSTOP command will not trigger the end-
motion relay #r specified in the STEPMOVE command.

STEPCOUNT(), STEPSPEED, STEPMOVE

STEPSPEED ch, pps, acc

Purpose

To set the speed pps and acceleration/retardation acc parameters
for the PLC's stepper motor motion controller (pulse-generator)
channel #ch.

ch should return a value of between 1 and 8. Speed pps is based
on no. of pulse per second (pps) output by the pulse generator.
The acceleration acc determines the total number of steps taken to
reach full acceleration from standstill and the number of steps
from full speed to a complete stop. The stepper motor calculates
and performs the speed trajectory according to these parameters
when the command STEPMOVE is executed.

STEPSPEED command should be executed at least once before
executing any subsequent STEPMOVE command to control the
pulse generation. The defined parameters will be remembered
until another STEPSPEED statement operating on the same stepper
channel is executed again.

11-30

Examples

STEPSPEED 2,2000,20

Comments The PLC's Stepper motor controller channel #2 is configured to send out
pulses at 2000 pulses per second when STEPMOVE instruction is
executed. It follows a linear acceleration trajectory which takes 20
pulses to reach the full speed of 2000 pps. This is equivalent to an
acceleration of

2 2
a= Y = 2000 _ 100,000 pulse/s2
2S 2x20

STR$(n)

STRS (n, d)

Purpose To retun a string that represents the decimal value of the numeric
argument n. If the second format is used then this function will
return a string of 'd’ number of characters.

Examples A$ = STR$(-1234)

B$ = STR$(-1234,7)
Comments A$ will contain the string : "-1234" , B$ will contain the string “-001234”

STRCMP(43, BS)

Purpose Perform a comparison between its two string expressions AS and
BS. IF AS and BS are equals, STRCMP will return a 0, if AS is of
lower order (in ASCII table order) than BS the function will retumn a
negative value. Otherwise it returns a positive value.
Examples IF STRCMP(A$, B$)=0 THEN
STEPMOVE 1,1000,1
ENDIF
Comments IF A$ and B$ are the same then turn on the stepper motor #1.
STRLWRS$(49)
Purpose To retun a string which is an all-lowercase copy of AS.
Examples B$ = STRLWR$(A$)+Z$
C$ = STRLWRS(CSH)
Comments The second example shows how to convert a string to all lower case.

11-31

STRUPRS$(4S)

Purpose . To return a string which is an all-uppercase copy of AS.
Examples B$ = STRUPR$(A%)
C$ = STRUPR$(C$)

Comments : The second example shows how to convert a string to upper case.

TESTBIT (v, n)

Purpose . To return the logic state of bit #n of the variable v. The function
retuns 1 if the bit is 1, otherwise it returns O.

n is an infeger of value between 0 and 15. v may be any integer
variable, however, if vis a 32-bit integer TESTBIT will only test the
lower significant 16 bits. A quick way to find out the bit position and
index of an I/O variable is to open their I/O table and check the
"CH:BIT" column. Bit position beyond 9 are represented by
hexadecimal number A to F.

Examples TESTBIT (Input[2],3)

Comments : To test whether input #20 is ON
(Input channel #2 bit #3 = Input 17 +3 = 20)

See Also : SETBIT, CLRBIT

TESTIO (labelname) -- Please refer to the definition of CLRIO command

TOGGLEIO labelname -- Please refer to the definition of CLRIO command

VAL (x$)

Purpose : To return a value of a decimal number contained in the argument
x$.

Examples B = VAL(''123")*100

Comments : B should contain the value 12300

11-32

WHILE expression ENDWHILE

Purpose

Syntax

Examples

Ccomments :

To execute a series of statements in a loop as long as a given
condifion is true.

WHILE expression

ENDWHILE

When WHILE statement is encountered, the expression will be
evaluated and if the result is true, the statements following the
expression will be executed unti the ENDWHILE statement.
Thereafter, execution branches back to the WHILE statement and
the expression is evaluated again. The loop statfements will be
executed repeatedly until the expression becomes false.

Warning: Be careful that the WHILE loop will not be an endless
loop as the PLC will appear to freeze up, being trapped in an
endless-loop execution. TRILOGI simulator attempts to detect this
situation by giving a warning message if a loop is executed for an
unduly large numiber of 100ps.

WHILE S = 1
IF INPUT[1] & &HO002: S = O : ENDWHILE
ENDWHILE

Execution will only be terminated when input #2 is ON. WHILE
loops may be nested; i.e. a WHILE loop may be placed within the
context of another WHILE loop. Each Loop must have a separate
ENDWHILE statement to mark the end of the loop.

WRITEMODBUS ch, DevicelD, address, data

Purpose

Example

. Automatically write the 16-bit data to a MODBUS ASCII device using

the MODBUS ASCII protocol. The communication baud rate is the
default baud rate of that COMM port unless it has been changed
by the SETBAUD command.

ch - PLC COMM port number (1-8)

Devi cel D - Device ID of the MODBUS device (1 to 255)

address - Zero-offset address of the holding register in the
MODBUS device.

dat a - the 16-bit data to be written to the MODBUS
device

WRITEMODBUS 3, 8, 1000, 1234

11-33

Comments: The data 1234 will be written to the MODBUS device with ID=08 at the
holding register offset address 1000 (in MODBUS convention this refer to
holding register #41001).

The command automatically checks the response string received
from the slave device for the correct LRC and the slave address. The
status of the operation can be checked by the user program by
testing the STATUS(2) function, which will return a ‘0’ if there is any
error or if the slave device is not present.

See Also : READMODBUS(), STATUS(2), NETCMD$()
WRITEMB2 c¢h, ID, addr, var, count { Applicable only to M+ firmware r44 or higher}
Purpose : Think of this as the multi-word version of WRITEMODBUS command.

Parameters : ch -

Example

Comments :

See Also

| D
addr

var -

count

PLC COMM port number

(1to 8 using Modbus ASCII or 11to 18 using Modbus RTU).
Device ID of the MODBUS slave device (1 to 255)
Zero-offset address of the holding register in the
MODBUS slave device starting from 0 = 40001.

the starting variable in the master whose datfa is to be
senf out (may be a DM or any system variable)

number of variables to send (max =16 in M+ PLC).

WRITEMB2 13,5,101,DM[10],8

The PLC will use MODBUS RTU protocol, via its Comm port #3, to write 8
words of data from DM[11] to DM[17] to the slave MODBUS device with
ID = 05 and into it's register offset address 101 to 108 (in MODBUS term
this refer to the #40102 to #40109 holding register) .

The command automatically checks the response string received
from the slave device for the correct slave address CRC16. Like
READMODBUS command, the status of this operation can be
checked by the user program by testing the STATUS(2) function.

READMB2, WRITEMODBUS, STATUS(2)

11-34

Appendix 1: Application Notes & Programming Examples

I. Important Notes to Programmers of TRILOGI Version 5.x

1. Understanding Ladder Logic Execution Process

Like all industrial PLCs, the CPU of the M-series PLC first checks the logic
states of the physical inputs and copies them into memory. During the
ladder logic scan the actual logic states of the physical Inputs (except
for interrupt inputs) are ignored by the PLC. The CPU uses the memory
copy of the inputs to execute the ladder program.

The CPU executes its ladder logic program starting from the top rung of
the program to the bottom rung. When the CPU reaches a ladder rung
that activates a {CusFn} or {dCusF} that custom function wil be
executed. The CPU will only contfinue to scan the rest of the ladder
program when the current custom function ends normally. Hence the
order in which a ladder rung is placed within a ladder program can
have an effect on the behavior of the program.

Output bits which are changed as a result of the program execution will
only be updated to the physical oufputs at the end of the ladder logic
scan. One scan time is defined as the time it takes to execute the 3
steps (read physical inputs, execute program, update physical outfputs).
The CPU repeats these 3 steps contfinuously all the time, known as
"Ladder Logic Scanning”.

Hence, it is important to note that the variables INPUT[N] s and OUTPUT[N]
in TBASIC are not the actual physical I/0Os of the PLC, but only a memory
representation of the actual 1/Os which will be updated only during the
I/O update cycles. The logic states of physical inputs are copied into the
INPUT[N] variables during input scan and the physical oufputs are set to
the logic states contained in the OUTPUT[N] variables during output
updates.

Therefore, one potential error that traditional BASIC programmers tend to
commit is to affempt to poll for a change in the variable INPUT[N] within
TBASIC such as the following:

WHILE INPUT[1] = O
>< ENDWHILE

This will result in an endless loop since the value of the variable INPUT[1]
will never change during execution of the custom function regardless of
the actual logic states of physical input #1 to #8. The only way to force
upon a physical /O update is to use the REFRESH command, but it is

Al-1

not a good practice for ladder logic programming to update physical
I/Os in the midst of a program execution. The REFRESH command is
meant more for forcing an immediate output to be turned ON or OFF
during time-critical situations.

Hence it is important to allow a ladder logic program to finish its scan so
that the physical 1/Os can be updated. You should never hog the CPU
within a particular custom function as this will mean the rest of the ladder
program don’t have a chance to be executed in a timely manner.

. The Difference Between {CusFn} and {dCusF}

It is very important 10 understand the difference between the two
formats of the custom functions once you understand how the ladder
logic scanning process works as described in the last section. If you use
the {CusFn}, the custom function will be executed EVERY SCAN of the
ladder logic program as long as its execution condition is ON.

On the other hand, the {dCusF} (known as the differentiated format) is
executed only ONCE when its execution condition goes from OFF to ON.
The execution condition must go OFF and then ON again for the
function to be executed again. It is not difficult to see that the
differentiated format is used far more frequently than the other one
since most custom functions involve arithmetic and when a condition is
ON you most likely want the computation to be performed ONCE and
not repeatedly in every scan of the ladder logic. You can easily
understand the difference between the two formats if you run the
following sample program:

Clk1.0s Fn #1
{Cusfn}
Clk1.0s Fn #2
{dCusf}
Custom Function #1
A=A+1
Custom Function #2
B=B+1

Run the program in simulator and press the <V> key to view the
changes in the variables A and B. You will see that B is incremented by

Al-2

one every second, while A is incremented wildly for 0.5s and then stops
for 0.5s. Try it! It can be very educational!

If you want to periodically check the status of an analog input or the real
time clock, you should use a clock pulse (0.1s, 1.0s etc as shown in the
example) and connect to a {dCusF}. Connecting to non-differentiated
version would mean checking thousands of times for half the period and
not at all for the other half period -- certainly not the intended outcome.

. Timers Contact Updating Process

All the timers' contacts of the PLC, like the inputs and outputs, are
updated simultaneously at the beginning of every ladder logic scan
and not at the rung that contains the (TIM) coil. So if you are using self-
reset timer, please note that if a timer times out its contact will be ON
from the beginning of the ladder logic rung until the rung that contains
the self-reset circuit. Thereafter the timer contact will be OPEN since the
coil has been self-reset.

Hence please note that you should place the self-reset timer rung after
all the ladder rungs that utilize the said timer contact. This allows those
ladder rungs which use the timer contact to have a chance of being
executed before the self-resetting rung clears the timer.

A pulse will be sent to Out 5 periodically determined by
the Set Value of timer T1

T1 Outb
I I (Out)
Tl Tl

/H’ (TIM)

TRILOGI Sample programs

There are many well-documented demo as well as practical TRILOGI
program examples included in the following TRILOGI installation folder:

<TRILOGI installation folder>\usr\samples

When you click on TRILOGI's “File -> Open (Local Drive)’” command, you
will be able select the user's folders where program files are stored. By
default, only two users are defined: "Administrator” and “samples” as follow:

Al-3

Loading Local File . 21

Lok jr: I-ﬁusr = - £k Eo-

1 Admiristrator

| zamples

File narne: *.pch Open I
Files of tupe: I,-'l'-.ll Files [=¥] j Cancel |

You should open the “samples” folder and select any files with *.PC5"
extension for viewing.

Loading Local File : & 2
Laak jn: I 5 samples j e e -
FileService_Modem Dema.PC5 11T herElse PCS
HMI EEPROM.pcS IndexT able. PCS
ladderE =amples Email.pch Intermpt. PCH
Analog-Timer. PCS Far-Next PCS KeyPad-MD.PCS
call PCS Gata.PCS LD-ECD.pcs
Clock.PCS HighSpeedCtr. PLS LeftShitt. PC5
L4 | i
File narne: I".pu:E Open I
Files of tupe: I,-'l'-.ll Files [=¥] j Cancel |

There are also sub-folders within the “samples” folder where sample
programs that relate to a particular topic or device are stored, such as
those relafes to using the MD-HMI. We strongly encourage you to open
these example programs fo see how these programs are structured. Most
of these programs can be run in the simulator except those that involve
communication with other devices.

Display Alphanumeric Messages on built-in LCD Display

M-series PLC such as the TI00MD-1616 supports built-in LCD display port
that allows low cost connection to industry standard LCD display module.
For such PLC, programming of the LCD display is via the SETLCD statement
supported by TBASIC language.

Al-4

Assignment:

Every 1 second, display a message as follow:

Temp. Check
Sitting Rm = xx °C.

Where xx depends on reading of A/D #1 which is returned by function
ADC(1).

Full scale A/D is 4096.
A/D range (0 to 4096) b Temperature O to 50°C

|| [dCusf]
Custom Function #1

| Clk:1.0s Fn #1
|

setLCD 1,1, “Temp. Check” * Display at at Column 1, Linel
setLCD 2,1, “Sitting Rm = “+ STR$(ADC(1)*50/4096, 2)
+CHR$(223)+"C”

Comments:

Every one second, the special bit Clk:1.0s closes and activates Function #1.
Within the Custom Function #1, ADC(1) reads the A/D converter #1 and
converts it into degrees. The integer value is then converted into a two-digit
string using the STRS function and concatenated to the rest of the text string for
display using the SETLCD command.

Simulation of the display string to built-in LCD is supported on TRiLOGI
Version 5.x. When in Simulation mode, press <V> key to view the Special
Variables and the messages will appear in an LCD Simulation window.

2. Setting Timer/Counter Set Values (S.V.) Using LCD Display

If you have an LCD display, then you can use two push-buttons inputs to
change the Set Values (SV) of any selected timers or counters with visual
feedback.

Assignment:

Press push-button “Increase” increment the SV of timer #1 by 0.5s. The
upper limit for timer #1 SVis 10s (SV <=100)

Al-5

Press push-button "Decrease” decrement the SV of timer #1 by 0.5s
Press “test” button turns ON output #1 for a duration given by timer #1
and then tumns it OFF,

Increase Fn #101
[dCusf]
Decrease Fn #102
[dCusf]
Test Tirlnl1/ Out1
(OUT
pd \ .)
Outl Tim1
(TIM)

Custom Function #101

Z = getTimerSV(1)

IF Z > 100 RETURN: ENDIF ' MAXIMUM 10s

setlimerSV 1, Z+5 ‘Increase the current SV by 5 (0.5s)
SETLCD 1,1,"T1-SV="+STRS(getTimersV(1),4)

Custom Function #102

setTimerSV 1, getTimerSV(1)-5 ‘Decrease the current SV by 5§
SETLCD 1,1,"T1-SV="+STRS(getTimersV(1),4)

Comments:

The getTimerSV (1) function returns the current set value of the Timer #1. This
value is read into variable Z in CusFn #101 but used directly in CusFn #102 for
changing the Set Value of Timer #1. The setTimerSV statement uses the value of
its second argument to update Timer #1’s SV accordingly.

Note that changes to the set value SV will be updated in the program EEPROM
memory and is non-volatile. However, EEPROM has a typical life-span of about
100,000 to 1,000,000 erase-write cycle. Exceeding this limit will “wear out” the
EEPROM and resulting in a read error when the PLC operates. Hence, you should
NEVER write a program that excessively changes the set value of the timer or
counter (e.g. put it in a non-differentiated form of [CusFn] which executes every
scan of the ladder program and continuously changes the content of the EEPROM).

3. Using a Potentiometer As An Analog Timer

A cheap potentiometer can be connected to the PLC A/D input and
provide a user-adjustable “knob” as an analog “Set Point” input device. A

Al-6

scale can be drawn around the potentiometer to provide visual indication
of set point value.

Assignment:

A potentiometer is connected to A/D #5. Use it to provide a timing
range of 0 to 10.00 seconds.

Pressing the “test” input turns ON output #1 for a duration determined
by the potentiometer reading, after that furns output #1 OFF.

Test Fn #10
—| [dCusf]
Test Tim1 OutT
LK (OUT
q ©
Outl Tim1
L (Tim)

Custom Function #10
HSTIMER 1 ' Define Timer #1 as High Speed Timer (0.01s base)

TimerPV[1] = ADC(1)*1000/4096 ' Set the timer running with value
' proportional 1o A/D value.

Comments:

To take full advantage of the resolution of the A/D converter, the timing range of (-
10 seconds is more finely divided when timer is defined as high-speed timer using
the HSTIMER command. The time base is now 0.01s. This means that for maximum
value of 10.00s, the timer should count down from 1000.

The next statement in CusFn #10 computes the ratio of the A/D input with respective
to its full scale value of 4096 and multiplies it to the maximum timing value of 1000.
Le., if the potentiometer wiper is at half way, the A/D reading will be around 2048,
the computation will results in a timing value = 2048*1000/4096 = 500, or 5.00
second. Note that TRILOGI 5.x does not support floating-point arithmetic. Hence
the multiplication must be carried out before the division. Otherwise, if you
compute 2048/4096 *1000, the result of the integer division of 2048/4096 = 0 and
the whole expression yields a ‘0°, which is clearly wrong!

The timer #1’s Present Value (P.V) register is loaded with this number, which will
start the timer countdown. In the next logic rung, the timer coil connected to the
latched “OUTL1” is necessary to prevent the timer from resetting itself. But It will
not overwrite the PV with its own Set Value (SV), which will not be used at all in
this case. This is because the previous ladder program has already started the timer
with a value determined by the position of the potentiometer “knob”.

Al-7

4. Motion Control of Stepper Motor

The M-series PLC can generate pulses to feed to stepper motor driver. The
maximum speed, acceleration, deceleration and total numiboer of pulses
to generate are definable using TBASIC. Both absolute positioning
commands and relative move commands are supported.

Assignment:
A "DEFHOME" input define the current location as home position.
Press the "START” input to begin Indexing the stepper motor to position at
1500, -2000, 4500 and 2000 steps with respect to the HOME position.
Pause for 1 seconds at each position. Return to home at the end of the

cycle.
Maximum speed = 5000 pps, Acceleration=100 steps to full speed.
DEFHOME Fn_#10
[dCusf]
START Fn_ #11
[dCusf]
RLYS Tlsec
(TIM)
Tlsec Fn_#20
[dCusf]
Custom Function #10
|| STEPHOME(1) ‘Define the HOME position for stepper 1

Custom Function #11

DM[1] = 1500: DM[2]= -2000: DM[3]=4500 ‘Store index position

DM[4]=9000: DM[5]=0

N=1

STEPSPEED 1, 5000,100 ‘Stepperl: Max 5000pps, Acc:100

STEPMOVEABS 1, DM[N], 5 *‘ Move to position stored in DM[1]
‘ at the end, turns ON relay 5

Custom Function #20

N = N+1
IFN<=5
STEPMOVEABS 1, DM[N], 5 ‘ Move to next position in DM[N]
ENDIF ‘ at the end, turns ON relay 5
Comments:

RLYS is the label for internal relay #5. T1sec is a timer with preset value of 10. At
the end of the pulse generation, RLYS will be activated. Ladder logic senses RLY5
and executes the T1SecC timer to cause a 1 second delay, after which custom
function #20 is executed which triggers another STEPMNEABS command and the
process repeats for the other four indexing positions.

Al-8

5. Activate Events at Scheduled Date and Time

All M-series PLCs have built-in Real Time Clock which keeps frack of Date
and Time and can be used to activate events at scheduled time.

Assignment:

Every day turn on output #1 (label name: Outl) at 19:00.
Turn OFF output #1 at 7:00

On 1st Jan 2000 at 12:00 turn ON output #5.

On the same day at 18:00 turn OFF output #5

Tim30s Fn #1

| | [dCusf]
Tim30s Tim30s
—/ (TIM)

Custom Function #1

IF TIME[T]=19 AND 1IME|2|=0 ' Hour hand at 19
SETIO OUTI ' Minute hand at 00
ELSE
IF TIME[1]=7 AND TIME[2]=0
CLRIO OUTI1
ENDIF
ENDIF

IF DATE[1]=2000 AND DATE[2]=1 ‘' Jan, year 2000
IF DATE[3]=1
IF TIME[1]=12 SETBIT OUTPUT[1],4:ENDIF
IF TIME[1]=18 CLRBIT OUTPUT[1],4:ENDIF
ENDIF
ENDIF

Comments:

1. Tim30s should have a Set Value = 300 and it activates Function #I every 30
seconds. It is not necessary to check the clock too often as checking consume
CPU execution cycles.

2. We used SETIO to control Output #1, but as a demonstration we use SETBIT to
control Output #5 which is bit #4 of the variable OUTPUT[1]. The statement
SETBIT outputl[1],4 turns ON output 5.

3. Actually it may not be necessary to check the minute hand since when the RTC
turns from 18:59 to 19:00, the output will be turned ON as long as
TIME[1]=19. Only when TIME[1]=7, then output #1 needs to be changed.

Al-9

6. HVAC (Heating, Ventilation and Air-Conditioning) Control

Assignment:

Read desired temperature setting (S) from a potentiometer connected
to A/D #5.

Read current air temperature (T) from sensor attached to A/D #1 (T)
Turn ON cold air-conditioner (output #1 with labelname: OUTT)

if T > Sbymorethan 1.5°C.

Turmn ON hot air-conditioner if (output #2)

if S > Ty more than 1.5°C.

Turn OFF both hot and cold air-conditioner if T is within + 1.5°C of S.

Parameters

Full scale A/D is 4096.
Range of Set Point: A/D #5 =0 b 16.0°C
AD #5 =4096 b 30.0°C

Range of Sensor: ADC#1 =0pb -10.0°C
ADC#1 = 4096 b 50.0°C

Clk:1.0s Fn #20
— | [dCusf]
Custom Function #20
S = ADC(5)*(300-160)/4096 +160 ‘Convert to °Cx10
T = ADC(1)*(500+100)/4096 -100 ‘Convert to °Cx10
IFS-T>15
SETIO OUT1 ‘Cold Air-conditioning ON
ELSE
CLRIO OUTT ‘if Tis hotter by 1.5°C
ENDIF
IFS-T<-15
SETBIT OUTPUT[1],1 ‘' Heater ON
ELSE
CLRBIT OUTPUT[1],1 ‘if Tiis colder by 1.5°C
ENDIF
Comments:

Since TRiLOGI Version 5.x does not support floating point computation, in order
to handle decimal value (£1.5° C) in this application we use a unit integer to
represent 0.1 quantity. All temperature readings are x10 times. Hence 16.0°C is
represented by 160, -10.0°C is represented by -100. This method, known as fixed-
point computation is quite commonly used in industrial control program.

AT-10

7. Closed-Loop PID Control of Heating Process

A/D#5 D/A #1
PID Burner
Controller
é A/D#1
| Sensor

E.g. Implementing Closed-loop Digital Control with
PID computation function

PID Controller Transfer Function:

K
G@:m+§+@s
1
Proportional Band
1

Kp = Proportional Gain =

K; = Integral Gain = :
! 9 Integral Time Constant

Assignment:

Read desired set-point temperature from a potentiometer
connected to A/D #5 (S) with temperature range between 50 °C -
200°C

Measure the process temperature from a thermocouple + signal
condifioner attached to A/D #1(T)

Compute the Error = S - T. Apply Proportional + Integral + Derivative
(P.1.D) algorithm to compute outfput X.

Apply output X to Digital-to-Analog converter D/A #1 to confrol a
variable position valve that feed fuel to the flame.

Sample and compute every 1 second.

Full scale A/D range is 4096.

Range of Set Point: A/ID #5 = 0P 50°C
A/D #5 =4096 b 200°C

Range of Sensor: ADC#1 =0pb 0°C
ADC#1 = 4096 b 300°C

Al-T1

Def PID Fn #5
| | [dCusf]

CKk1.0s Fn #6
| | [dCusf]

Custom Function #5
P=500:1=50:D=0

PIDDEF 1, 2048+«100 ,P,I,D *'Use PID Engine #1, maximum limit
' = +/- 50% of full scale

Custom Function #6
S = ADC(5) * (200-50)/4096 + 50 ‘Convert to °C
T = ADC(1) * (300 - 0)/4096

X = PIDcompute(1, S - T)/100 + 2048 * X can vary within + 50%

setDAC 1, X * Write to analog D/A output #1
Comments:
1. We use two decimal places to represent the gains Kp, K;and Kp Each integer

unit represents 0.01. Proportional gain Kp = 5 is represented by variable P =
500. Likewise, Integral gains K; = 0.5 is represented by I = 50 and
Differential gains = 0 means Differential term is not used (P.I. only). The
integrator limits of + 2048 for the P1DDEF statement must be multiplied by 100
to be put on the same scale as the P,I and D parameters.

Note that since TRiLOGI does not support floating point arithmetic, the
multiplication must be carried out before the division. Otherwise, if you
compute 150/4096 *ADC(5), the result of the integer division of 150/4096 = 0
and the whole expression yields a ‘0°, which is clearly wrong!

2. The value returned by PIDcompute () function is then divided by 100 to get the
real value of controller output. PIDcompute() returns a signed value which
can vary from -limit to + limit. We choose the 50% D/A output (4096/2 = 2048)
as the mean control point so that negative values from PIDcompute () means
D/A output will be < 2048, positive values means D/A output will be > 2048.

AT-12

Appendix 2: PLC & PC Hardware Setup and Configuration

PLC to PC Connection

1. Single PLC to One PC Running TLServer

The simplest configuration will be when there is only one PLC and one
PC involved. You simply connect the PLC's RS232 port to the any of the
RS232 serial port (COM1: to COMS:) of a PC and run the TLServer on it. If
you use other than COM1: on your PC, you will need to configure
TLServer's serial port to match the communication port numiber.

. Multiple PLCs to One PC Running TLServer

You can connect multiple M-series PLCs to a single PC running TLServer
by connecting every PLC's RS485 in a daisy-chain manner to the PC's
RS232 port. You do need to purchase a RS232-t0-RS485 converter (such
as the Auto485 adapter) to connect the PC's RS232 port to the RS485
network. Please refer to the PLC's User Manual for details on installation
issues regarding electrical specifications and termination requirements
when connecting the PLCs on an RS485 network.

Internet TRILOGI can log-in to the TLServer and have immediate access
to all the PLCs on the RS485 network just by specifying the ID address of
the PLC concerned. Up to 32 standard M-series PLCs can be networked
to a TLServer. If you replace the RS485 driver IC by a 1/8 power type
you can link up to 256 PLCs to a single TLServer for programming and
monitoring!

+5V
Twisted -pair RS485 network cable 560 Te:(r;r;iir;?ct)irng
120w
RS485
+
Host Computer with | | 110oMmp+ T100MX+ T28H-Rela
RS-485 or RS485 RS485 RS485
M-series PLC

Networking Issues

The networking method used by the PC running the TLServer, as well as
how the TRILOGI client software accesses the TLServer will have impact on
the configuration of both the TLServer and the TRILOGI client. We will
consider various scenarios below.

A2-1

1. TLServer and TRILOGI Client On Same PC.

When both TRILOGI client and TLServer runs on the same PC, we call this
a “localhost” access and you can use the IP Address: 127.0.01:9080 to
login to TLServer. Localhost access is always available regardless of
whether this PC has any network connection to LAN or the Internet.

Note that If your PC has no network connection, then TLServer will report
this localhost IP address on its front panel. However, if the PC is
connected to the Internet or a LAN you will see different IP addresses.
Remember that even if TLServer does not report 127.0.0.1, it is always
available for localhost programming. You can either run the TRILOGI
Application directly or you can open up your web-browser and key in
the following URL: http://127.0.0.1:9080. In the latter case, you are
running TRILOGI as an applet that is loaded from the TLServer.

; Internet TRILOGI Home Page - Microzoft Intermnet Explorer

J Eile Edit iew Favortez Toolz Help |

J - = @) | A G !
Haek FEararnd Stop Refresh Home Search Favorites

| ddress [@] hp: /4127 0.0.1:3080/

| @60 |[Links >

rs

‘ Internet TRILOGI Version 5.0

2. TLServer has Direct Connection to the Internet

If the PC running the TLServer enjoys a direct connection to the Internet
via dial-up, DSL, T1 line or cable modem, then TLServer will be
accessible to any client on the Internet. Note that if you connect to the
Intfernet via dial-up connection, then do remember to connect to the
Internet _before you run TLServer so that it can report the actual IP
address on its front panel.

If the TRILOGI client software also accesses the Internet via direct
connection, you will have the least problem. However, if the TRILOGI
client is sitting behind a corporate firewall, then the situation is much
more complex and it has impact on both the TLServer and the TRILOGI
settings, as shown in the following table:

TRILOGI Client has Direct
Internet Connection

TRILOGI runs on a PC protected
by Corporate Firewall

TLServer:: port settings=80 or
any value above 1024

TRILOGI: "Use HttpProxy"
setting is optional

TLServer: Port Settings = 80

TRILOGI: "Use HttpProxy" =
frue. May need to obtain
proxy servers |P address.

A2-2

3. What Happens when a Client is behind a firewall but the TLServer
has direct link to the Internet?

If the client PC is located within a corporate Intranet and protected by a
firewall, then there are very limited means for the client to access the
Internet outside of the firewall. Note that NOT all PCs within the LAN have
access 1o the Internet. Whether a PC has access 1o the Internet or not is
decided by your company's System Administrator.

Even if a particular client PC does have access to the Infernet (because
you are able to use a browser to visit Yahoo!), it doesn't mean that the
PC has a direct connection to the Internet. What may actually happen
is that the network administrator has setup a "Proxy Server' that will
intercept your client PC's request to link to the Internet. The proxy server is
the one that actually has a direct link to the Internet. It acts on behalf of
the client within the Intranet to process HTTP connection to the Internet
and passes the response data 1o back to the client.

So how does the proxy server determine whether a network packet is
meant for the Internet and not meant for another workstation within the
Intranet? It determines it by examining the port number that the packet
attempts 1o connect to. If a connection is made to the well-known HTTP
port which is = 80, it will be handled by the proxy server. If you use a
port number such as 9080 (default TLServer port address) it may think
that the connection is to be made to some local workstation and
hence will not direct the packet via the proxy server 1o the Internet.

Therefore, in order for the client 1o make connection to the Internet via
the proxy server, the TLServer port address should be set to 80. In
addition, the TRILOGI client should also be configured to access the
TLServer via a "Htp Proxy Server' as described in the document "Log-In to
TLServer",

4. TLServer and TRILOGI On The Same Local Area Network

If the TLServer is running on a workstation that is part of a local area
network, it is unlikely that the workstation will have a direct connection to
the Internet (unless the System Administrator has deliberately configured
it for that purpose). When the TLServer starts, it will report the IP Address of
the workstation which is the Intranet IP address and NOT the Internet IP
address.

Now if the TRILOGI client is running on another workstation which is also
part of the same local area network, then it is quite simple: TLServer can
be assigned any unused port number above 1024 and the TRILOGI
client can access TLServer from any other workstations. However, avoid

A2-3

setting TLServer to port 80 since by default, port 80 is for accessing the
Intfernet via the HTIP proxy server.

. How to access TLServer running on a Private LAN from the Public
Internet?

If the workstation that TLServer is running on does not have a direct
Infernet connection to the Internet, then it will normally not be possible
to access the TLServer via the public Internet since the firewall will block
any attempts to access a PC inside the LAN. There are two possible
ways to overcome this:

1. Consult your System Administrator to configure a Network Address
Translator that will assign you a public IP Address that will be mapped
to the local workstation that runs the TLServer.

2. If yourneed to provide connectivity from the Intemet is only
temporary (e.Q. allowing your contractor to fix a software bug) it may
be easier 1o use a modem and dial-up to an ISP when the need
arises. Once the connection is no longer needed, just hang up the
modem. However, before you do this, please check with your
company's System Administrator to make sure that you are not
violating the security policy. If that is a problem, you may consider
using a standalone notebook computer or PC (i.e. not connected to
the LAN) to make the dial-up connection, which provides temporary
Internet connectivity for the TLServer (and hence the PLCs) but will not
compromise the security of your corporate Intranet.

. Home Networking Type Routers

If your workstation shares an Internet connection via a low cost NAT
roufer (these are getting very popular nowadays with home networking
suppliers such as Linksys, NetGear, etc), your TRILOGI client should not
have much problem accessing a remote TLServer since these routers
typically do not forbid your workstation from making direct outgoing
connection to the Internet.

However, by default most NAT router's built-in Firewall will block any
incoming aftempt to access the TLServer. Fortunately, you should be
able to configure the router to perform what is known as “Port
Forwarding” - i.e. to forward any external TCP/IP packets that are
destined to a certain port number to a designafed workstation on the
home network. In that case, you should configure your router to forward
port number 2080 to the PC that runs the TLServer (assuming the TLServer
is configured for port 2080). Please refer to your router's help manual for
details.

A2-4

Appendix 3. PL C-to-M odem Communication Setup

A remotely located M-series PLC can be connected to a host PC via
public-switch telephone network (PSTN), radio or cellular phone network. This
can be accomplished by using two analog modems, one connected to
the PLC’s RS232 serial port, and another modem connected to the remote
host PC as follow:

Fublic COR M
Telephong R5252
M et ark: \
Host !

Wodem |—— 7 [modem]]| Ti00mD

Internal or

Extemal T100mM
FS5232C

Extemal

There are a some technical issues that need to be handled carefully in
order to successfully implement the modem-linked host communications
as described in the following sections.

1.

Modem Connection

Modem 1: The host PC may use any internal or external modem that
can communicate at 2400 bps or faster. Connect the modem to the
PC as instructed in the modem’s manual and connect the phone line to
the phone jack on the back of the modem marked "WALL" or "Line",

DB9 Male DB25 Male Female

DB25
2 2 socket
3 3
ToPLC | 4 ! 20 MODEM
COMM1 6 With DB25
(Female) 5 7 socket
4
5

Modem 2: The modem to be aftached to the PLC (modem?2) must be
an external modem with an RS232 connection port. Since modem are
DCE type device, they most likely come with a female type DB25 or

A3-1

DB socket meant for plugging into the PC’s RS232 port. Since the PLC’s
host link port is also a female DB?, we need to construct a DB?-male-to-
DB25-male cable or DB?-male-to-DB?-male cable to link the PLC to the
modem, as follow:

DBS Male DB9 Male Female DBYS
2 2 socket
J X S MODEM
ToPLC | 4 4 _
coMM1 | g L_e with EBtg
{(Female) 5 5 ke
7
8

2. Communication Speed

When communicating via modems, there are two different definitions
of communication speeds that you should be aware of;

The "DTE Speed" or 'line rate" is the serial communication speed
between the modem and the device connected to its RS232 port.
Most modems can automatically detect the RS232 speed of the
device and can assume any speed from 1200, 2400 all the way to
115,200 bps. The first ASCIl character they receive from the device
will determine the DIE speed that the modem will use to
communicate with the device.

The "modem-to-modem communication speed" is what you read
on the modem specifications, such as 33.6Kbps, 56Kbps etc. When
two modems are connected, they automatically negotiate for the
best speed to communicate between the two of them based on
the quality of the phone connection and the maximum speed that
both modems are able to achieve. We usually have no control of
what speed they choose to communicate. But one thing is for sure,
which is that the modem-to-modem speed is always lower than the
DTE speed.

Since the default communication baud rate of the M-series PLC's RS232
serial port is 38,400 bps, the PLC should send a modem initialization
string to the modem on the first scan pulse so that the modem can
recognize its default DTE speed (i.e. 38,400 bps) in order to talk to the

A3-2

PLC. E.g. To reset the modem, you just have to send an ASCII string "ATZ"
to the modem using the following TBASIC command:

PRINT #1 "ATZ"

If you want your modem to automatically answer to an incoming call
(e.g. using TLServer 2.0 modem dialing capability), then you should
execute the following TBASIC statement:

PRINT #1 "ATSO=1"

The above statement will tell the modem to answer on first ring, you can
also change the number 1 to other numbers, E.g. if ATSO=3 it will answer
on the 3 ring of the phone.

. Software and Programming

The TLServer 2.0, which is part of the Intermet TRILOGI software suite,
already includes built-in support for dialing a modem. Hence if you are
using the PLC in passive answer mode only, all the PLC needs to do is to
send a modem initialization string "ATSO=1" using the "1st.Scan" pulse to
put the modem in auto-answer mode whenever the PLC is powered up.
The PLC does not need to issue any more commands to the modem.
Whenever a user wants to communicate with the PLC, he/she will first
use the TLServer to dial and connect 1o the PLC’s modem and when the
connection is established, he/she will then be able to use the TRILOGI
client or the TRi-Excellink program to communicate with the PLC. The
fact that the PLC is connected via modem and not via direct RS232 is
totally transparent to the client programs. To prevent unauthorized
access to the PLC, you may need to use the TBASIC command
"SETPASSWORD" to set a protective password.

The great flexibility of the M-series PLCs becomes even more apparent
when you realize that you can easily program the PLC to automatically
dial in to the TLServer to perform a number of tasks, such as using the
PLC's File Service 1o save or append data to hard disk files, send email
to anyone via the Internet or even synchronize its real time clock with the
host PC!

A number of examples have been included in the
"C:\TRiLOGI\TL5\usr\samples\FileService Modem" folder in TRILOGI
version 5.1 and above. All these examples make use of a powerful yet
easy fo use custom function that was written entirely using the standard
TBASIC commands (see source code listing in the text box below). You
only need to create the following simple ladder circuit o use this
function (assuming it is function #10):

A3-3

D$ = "ATDT*802'" " store the phone number
IF TESTI0(Connected) THEN " already connected.
IF TESTI0(DialModem)=0 * connection no longer needed

IF DM[3991]=0 " used as timer for modem attention.
PRINT #1 " clear serial-out buffer.
WHILE INCOMM(1)<> -1 * clear whatever data in serial-in
buffer
ENDWHILE
ELSE
IF DM[3991]=5
PRINT #1 ""+++"; "get modem attention
ELSE
IF DM[3991]>=10 "Wait 5 second to gain attention.
PRINT #1 "ATH" "hang up modem command.
CLRIO CONNECTED
DM[3991]=0
ENDIF
ENDIF
ENDIF
DM[3991]=DM[3991]+1 "increment the timer
ENDIF
RETURN
ENDIF

IF TESTI0(dialModem)=0 RETURN: ENDIF
" IT DM[3990] > O it means a dialing action has started.
IT DM[3990] > 30 it means more than 30 seconds has passed
and connection still not established, then retry.
IF DM[3990]=0 " Use this DM as a flag
WHILE INCOMM(1)<> -1 " clear whatever data in serial buffer first.
ENDWHILE
PRINT #1 D$ * Dial the number
DM[3990]=1
RETURN
ENDIF
A$ = INPUT$(1)
IF LEN(A$) = 0
DM[3990]=DM[3990]+1 " also use it to track the time-out
IF DM[3990] = 28 " 28 seconds has lapsed.
PRINT #1 "ATH"

A3-4

ENDIF
IF DM[3990]>=30: DM[3990]=0: ENDIF
RETURN
ENDIF
SETLCD 4,1,A%
IF STRCMP(MID$(A$,2,7),"CONNECT'")=0 " is connected

DM[3990] = O " for next round of connection

DM[3991] = O " reset timer for hang-up modem use

SET10 Connected " set an 1/0 bit to indicate connection
ENDIF

All you need to do is to copy and paste this custom function to your own
Ladder+BASIC program, then create an /O with label name "DialModem" —
this may be an input, output, relay, fimer or counter contact. The moment this
I/O bit "DialModem" is furned on, the PLC will begin to execute the sequence
of dialing the remote modem, waiting for a successful connection and then
turning on an I/O bit with the label name "Connected". If the dialing cannot be
completed within 30 seconds, this custom function will hang up and then re-
dial. The process will be repeated indefinitely until either a successful
connection is made or if the "DialModem" i/o has been turned OFF.

To disconnect from the modem (hang up), your PLC program just have to turn
off the "DialModem" I/O bit and the abovementioned custom function will
automatically perform the action of hanging up the modem.

Note: Since the PLC does not have a carrier detect (CD) connection to the
modem, therefore if the connection is lost after a successful initial connection,
the PLC would have no way of knowing it immediately. Your program would
have to detect this condition (e.q. if it sends a file service commmand and does
not receive a "<OK>" acknowledgement string from the host). Once the PLC
notes that the connection is lost, it can re-establish the connection by simply
turning off the /O bit with label name "Connected". (say, by executing the
"CLRIO Connected" statement). As long as the "DialModem" |/O bit is on, the
custom function will re-dial and attempt to make another connection if it
notices that the "Connected" bit has been turned OFF for whatever reason.

A3-5

Copyright ©2001 - 2003
Triangle Research International, Inc.
All rights Reserved

	Cover Page
	Copyright and Disclaimer
	Table of Contents
	 Chapter 1 - Internet TRiLOGI Installation Guide
	 Chapter 2 - Intro to Internet TRiLOGI
	 Chapter 3 - Using the TLServer
	 Chapter 4 - Internet TRiLOGI Client
	 Chapter 5 - Ladder Logic Tutorial
	 Chapter 6 - TRiLOGI Ladder Logic Reference
	 Chapter 7 - TRiLOGI Main Menu Reference
	 Chapter 8 - Ladder Language Reference
	 Chapter 9 - Intro to TBASIC Custom Functions
	 Chapter 10 - TBASIC Statements, Functions Operators and Variables
	 Chapter 11 - TBASIC Keyword Reference

